French flag Arrows English flag
Moon Arrows Sun
Actuelle
Arrows
Autre

Les primitives des fonctions trigonométriques

Les fonctions trigonométriques de base : \(sin(x), cos(x), tan(x)\)
La fonction sinus \( : {\displaystyle \int^x} sin(t) \ dt \)

La fonction \( sin(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = sin(x) $$

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x sin(t) \ dt = -cos(x)$$
La fonction cosinus \( : {\displaystyle \int^x} cos(t) \ dt \)

La fonction \( cos(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = cos(x) $$

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x cos(t) \ dt = sin(x)$$
La fonction tangente \( : {\displaystyle \int^x} tan(t) \ dt \)

La fonction \( tan(x) \) est définie de la manière suivante :

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], \enspace f(x) = tan(x) = \frac{sin(x)}{cos(x)} $$

Elle admet pour primitive :

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], $$
$$ \int^x tan(t) \ dt = - ln|cos(x)| = ln|sec(x)|$$
Les fonctions trigonométriques de base réciproques : \(arcsin(x)\), \(arccos(x)\), \( arctan(x)\)
La fonction arcsinus \( : {\displaystyle \int^x} arcsin(t) \ dt \)

La fonction \( arcsin(x) \) est la fonction réciproque de la fonction \( sin(x) \), elle est définie de la manière suivante :

$$ \forall x \in [-1, \hspace{0.2em} 1], \enspace f(x) = arcsin(x) = sin^{-1}(x) $$

Elle admet pour primitive :

$$ \forall x \in [-1, \hspace{0.2em} 1], $$
$$ \int^x arcsin(t) \ dt = x \ arcsin(x) + \sqrt{1-x^2}$$
La fonction arccosinus \( : {\displaystyle \int^x} arccos(t) \ dt \)

La fonction \( arccos(x) \) est la fonction réciproque de la fonction \( cos(x) \), elle est définie de la manière suivante :

$$ \forall x \in [-1, \hspace{0.2em} 1], \enspace f(x) = arccos(x) = cos^{-1}(x) $$

Elle admet pour primitive :

$$ \forall x \in [-1, \hspace{0.2em} 1], $$
$$ \int^x arccos(t) \ dt = x \ arccos(x) - \sqrt{1-x^2}$$
La fonction arctangente \( : {\displaystyle \int^x} arctan(t) \ dt \)

La fonction \( arctan(x) \) est la fonction réciproque de la fonction \( tan(x) \), elle est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = arctan(x) = tan^{-1}(x) $$

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$\int^x arctan(t) \ dt = x \ arctan(x) - \frac{1}{2} ln\left(1+x^2 \right)$$
Les fonctions trigonométriques sécantes : \(cosec(x), sec(x), cotan(x)\)
La fonction cosécante \( : {\displaystyle \int^x} cosec(t) \ dt \)

La fonction \( cosec(x) \) est définie de la manière suivante :

$$ \forall k \in \mathbb{Z}, \ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ k\pi \bigr \} \Bigr], \enspace f(x) = cosec(x) = \frac{1}{sin(x)} $$

Elle admet pour primitives :

  1. Par les fonctions trigonométriques sécantes

  2. $$ \forall k \in \mathbb{Z}, \ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ k\pi \bigr \} \Bigr],$$
    $$\int^x cosec(t) \ dt = ln \left|cosec(x) -cotan(x) \right|$$
  3. En passant par les règles de Bioche

  4. $$ \forall k \in \mathbb{Z}, \ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ k\pi \bigr \} \Bigr],$$
    $$\int^x cosec(t) \ dt = ln \left| tan \left( \frac{x}{2}\right) \right| $$
La fonction sécante \( : {\displaystyle \int^x} sec(t) \ dt \)

La fonction \( sec(x) \) est définie de la manière suivante :

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], \enspace f(x) = sec(x) = \frac{1}{cos(x)} $$

Elle admet pour primitives :

  1. Par les fonctions trigonométriques sécantes

  2. $$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], $$
    $$\int^x sec(t) \ dt = ln \left|sec(x) + tan(x) \right|$$
  3. En passant par les règles de Bioche

  4. $$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], $$
    $$\int^x sec(t) \ dt = ln \left| tan\left( \frac{x}{2} + \frac{\pi}{4} \right) \right| $$
La fonction cotangente \( : {\displaystyle \int^x} cotan(t) \ dt \)

La fonction \( cotan(x) \) est définie de la manière suivante :

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ k\pi \bigr \} \Bigr] , \enspace f(x) = cotan(x) = \frac{cosec(x)}{sec(x)} = \frac{1}{tan(x)} $$

Elle admet pour primitive :

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ k\pi \Bigr \} \biggr] , $$
$$ \int^x cotan(t) \ dt = - ln|sin(x)| = ln|cosec(x)|$$
Les fonctions trigonométriques sécantes réciproques : \(arccosec(x)\), \(arcsec(x)\), \( arccotan(x)\)
La fonction arccosécante \( : {\displaystyle \int^x} arccosec(t) \ dt \)

La fonction \( arccosec(x) \) est la fonction réciproque de la fonction \( cosec(x) \), elle est définie de la manière suivante :

$$ \forall x \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1] \cup[1, \hspace{0.1em} +\infty[ , \enspace f(x) = arccosec(x) = cosec^{-1}(x) $$

Elle admet pour primitive :

$$ \forall x \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1] \cup[1, \hspace{0.1em} +\infty[ , $$
$$\int^x arccosec(t) \ dt = x \ arccosec(x) + ln \left|\sqrt{x^2-1} + |x| \right|$$
La fonction arcsécante \( : {\displaystyle \int^x} arcsec(t) \ dt \)

La fonction \( arcsec(x) \) est la fonction réciproque de la fonction \( sec(x) \), elle est définie de la manière suivante :

$$ \forall x \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1] \cup[1, \hspace{0.1em} +\infty[ , \enspace f(x) = arcsec(x) = sec^{-1}(x) $$

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$\int^x arcsec(t) \ dt = x \ arcsec(x) - ln \left|\sqrt{x^2-1} + |x| \right| $$
La fonction arccotangente \( : {\displaystyle \int^x} arccotan(t) \ dt \)

La fonction \( arccotan(x) \) est la fonction réciproque de la fonction \( cotan(x) \), elle est définie de la manière suivante :

$$ \forall x \in \mathbb{R} , \enspace f(x) = arccotan(x) = cotan^{-1}(x) $$

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$\int^x arccotan(t) \ dt = x \ arccotan(x) + \frac{1}{2} ln\left(1+x^2 \right) $$
Les fonctions hyperboliques : \(sinh(x), cosh(x), tanh(x)\)
La fonction sinus hyperbolique \( : {\displaystyle \int^x} sinh(t) \ dt \)

La fonction \( sinh(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = sinh(x) = \frac{e^x - e^{-x} }{2} $$

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x sinh(t) \ dt = cosh(x)$$
La fonction cosinus hyperbolique \( : {\displaystyle \int^x} cosh(t) \ dt \)

La fonction \( cosh(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = cosh(x) = \frac{e^x + e^{-x} }{2} $$

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x cosh(t) \ dt = sinh(x)$$
La fonction tangente hyperbolique \( : {\displaystyle \int^x} tanh(t) \ dt \)

La fonction \( tanh(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} $$

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x tanh(t) \ dt = ln|cosh(x)| = -ln|sech(x)|$$
Les fonctions hyperboliques réciproques : \( arcsinh(x)\), \(arccosh(x)\), \( arctanh(x)\)
La fonction arcsinus hyperbolique \( : {\displaystyle \int^x} arcsinh(t) \ dt \)

La fonction \( arcsinh(x) \) est la fonction réciproque de la fonction \( sinh(x) \), elle est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = arcsinh(x)= sinh^{-1}(x) $$

Par ailleurs, elle peut aussi être définie explicitement par :

$$ \forall x \in \mathbb{R},$$
$$ arcsinh(x) = ln \left|x + \sqrt{x^2 + 1}\right| $$

(\(\Longrightarrow\) voir la démonstration)

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x arcsinh(t) \ dt = x \ arcsinh(x) - \sqrt{1+x^2}$$
La fonction arccosinus hyperbolique \( : {\displaystyle \int^x} arccosh(t) \ dt \)

La fonction \( arccosh(x) \) est la fonction réciproque de la fonction \( cosh(x) \), elle est définie de la manière suivante :

$$ \forall x \in [1, \hspace{0.1em} +\infty[, \enspace f(x) = arccosh(x) = cosh^{-1}(x) $$

Par ailleurs, elle peut aussi être définie explicitement par :

$$ \forall x \in [1, \hspace{0.1em} +\infty[, $$
$$ arccosh(x) = ln \Bigl| x + \sqrt{x^2 - 1}\Bigr| $$

(\(\Longrightarrow\) voir la démonstration)

Elle admet pour primitive :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x arccosh(t) \ dt = x \ arccosh(x) - \sqrt{x^2-1}$$
La fonction arctangente hyperbolique \( : {\displaystyle \int^x} arctanh(t) \ dt \)

La fonction \( arctanh(x) \) est la fonction réciproque de la fonction \( tanh(x) \), elle est définie de la manière suivante :

$$ \forall x \in \hspace{0.04em} ]-1, \hspace{0.1em} 1[, \enspace f(x) = arctanh(x) = tanh^{-1}(x) $$

Par ailleurs, elle peut aussi être définie explicitement par :

$$\forall x \in \hspace{0.04em} ]-1, \hspace{0.1em} 1[,$$
$$ arctanh(x) = \frac{1}{2} ln \left| \frac{1 + x}{1 - x} \right| $$

(\(\Longrightarrow\) voir la démonstration)

Elle admet pour primitive :

$$ \forall x \in [-1, \hspace{0.2em} 1], $$
$$ \int^x arctanh(t) \ dt = x \ arctanh(x) + ln|1 - x^2|$$
Les fonctions sécantes hyperboliques : \(cosech(x), sech(x), cotanh(x)\)
La fonction cosécante hyperbolique \( : {\displaystyle \int^x} cosech(t) \ dt \)

La fonction \( cosech(x) \) est définie de la manière suivante :

$$ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ 0 \bigr \} \Bigr], \enspace f(x) = cosech(x) = \frac{1}{sinh(x)} $$

Elle admet pour primitives :

  1. Par les fonctions trigonométriques sécantes

  2. $$ \forall x \in \hspace{0.04em} \mathbb{R}^*, $$
    $$\int^x cosech(t) \ dt = ln \left|cosech(x) -cotanh(x) \right|$$
  3. En passant par le changement de variable \(u = e^t\)

  4. $$ \forall x \in \hspace{0.04em} \mathbb{R}^*,$$
    $$\int^x cosech(t) \ dt = ln \left| cotanh\left(\frac{x}{2} \right) \right|$$
La fonction sécante hyperbolique \( : {\displaystyle \int^x} sech(t) \ dt \)

La fonction \( sech(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = sech(x) = \frac{1}{cosh(x)} $$

Elle admet pour primitives :

  1. Par les fonctions trigonométriques sécantes

  2. $$ \forall x \in \mathbb{R}, $$
    $$\int^x sech(t) \ dt = arctan(sinh(x)) $$
  3. En passant par le changement de variable \(u = e^t\)

  4. $$ \forall x \in \mathbb{R}, $$
    $$ \int^x sech(t) \ dt = 2 \ arctan(e^x) $$
La fonction cotangente hyperbolique \( : {\displaystyle \int^x} cotanh(t) \ dt \)

La fonction \( cotanh(x) \) est définie de la manière suivante :

$$ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ 0 \bigr \} \Bigr], \enspace f(x) = cotanh(x) = \frac{1}{tanh(x)} $$

Elle admet pour primitive :

$$ \forall x \in \Bigl[ \mathbb{R} \hspace{0.1em}\backslash \hspace{0.2em} \left \{ 0 \right \} \Bigr], $$
$$ \int^x cotanh(t) \ dt = ln|sinh(x)| = -ln|cosech(x)|$$
Les fonctions sécantes hyperboliques réciproques : : \(arccosech(x)\), \(arcsech(x)\), \( arccotanh(x)\)
La fonction arccosécante hyperbolique \( : {\displaystyle \int^x} arccosech(t) \ dt \)

La fonction \( arccosech(x) \) est la fonction réciproque de la fonction \( cosech(x) \), elle est définie de la manière suivante :

$$\forall x \in \Bigl[ \mathbb{R} \hspace{0.1em} \backslash \hspace{0.2em} \left \{ 0 \right \} \Bigr] , \enspace f(x) = arccosech(x) = cosech^{-1}(x) $$

Elle admet pour primitive :

$$ \forall x \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1] \cup[1, \hspace{0.1em} +\infty[ , $$
$$\int^x arccosech(t) \ dt = x \ arccosech(x) + ln \left|\sqrt{x^2+1} + |x| \right|$$
La fonction arcsécante hyperbolique \( : {\displaystyle \int^x} arcsech(t) \ dt \)

La fonction \( arcsech(x) \) est la fonction réciproque de la fonction \( sech(x) \), elle est définie de la manière suivante :

$$ \forall x \in \hspace{0.04em} ]0, \hspace{0.1em} 1] , \enspace f(x) = arcsech(x) = sech^{-1}(x) $$

Elle admet pour primitive :

$$ \forall x \in \hspace{0.04em} ]0, \hspace{0.1em} 1]$$
$$\int^x arcsech(t) \ dt = x \ arcsec(x) + arcsin(x) $$
La fonction arccotangente hyperbolique \( : {\displaystyle \int^x} arccotanh(t) \ dt \)

La fonction \( arccotanh(x) \) est la fonction réciproque de la fonction \( cotanh(x) \), elle est définie de la manière suivante :

$$ \forall \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1[ \hspace{0.1em} \cup \hspace{0.1em} ]1, \hspace{0.1em} +\infty[ , \enspace f(x) = arccotanh(x) =cotanh^{-1}(x) $$

Elle admet pour primitive :

$$ \forall \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1[ \hspace{0.1em} \cup \hspace{0.1em} ]1, \hspace{0.1em} +\infty[ , $$
$$\int^x arccotanh(t) \ dt = x \ arccotanh(x) + ln \left|1-x^2 \right| $$
Récapitulatif des primitives de fonctions trigonométriques

Démonstrations

Les fonctions trigonométriques de base \( : sin(x), cos(x), tan(x)\)

La fonction sinus \( : {\displaystyle \int^x} sin(t) \ dt \)

La fonction \( sin(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = sin(x) $$

Comme on sait par les dérivées des fonctions trigonométriques que :

$$ \forall x \in \mathbb{R}, $$
$$ cos(x)' = -sin(x) $$

Alors en prenant simplement la primitive de chaque côté,

$$ \int^x cos(x)' \ dt = - \int^x sin(x) \ dt $$
$$ \forall x \in \mathbb{R}, $$
$$ \int^x sin(t) \ dt = -cos(x)$$

La fonction cosinus \(: cos(x)\)

La fonction \( cos(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = cos(x) $$

De la même manière que plus haut pour la fonction \(sin(x)\), on obtient directement :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x cos(t) \ dt = sin(x)$$

La fonction tangente \( : {\displaystyle \int^x} tan(t) \ dt \)

La fonction \( tan(x) \) est définie de la manière suivante :

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], \enspace f(x) = tan(x) = \frac{sin(x)}{cos(x)} $$

À partir de cette définition, on a :

$$\int^x tan(t) \ dt = \int^x \frac{sin(t)}{cos(t)} \ dt $$

Effectuons le changement de variable suivant : \(u = cos(t)\).

On a maintenant :

$$ \begin{gather*} \int^x \frac{sin(t)}{cos(t)} \ dt = \int^x -\frac{du}{u} \end{gather*} $$
$$ avec \enspace \Biggl \{ \begin{gather*} u = cos(t) \\ du = -sin(t) \ dt \end{gather*} $$

Soit,

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], $$
$$ \int^x tan(t) \ dt = - ln|cos(x)| = ln|sec(x)|$$

Les fonctions trigonométriques de base réciproques \( : arcsin(x), arccos(x), arctan(x)\)

La fonction arcsinus \(: arcsin(x)\)

La fonction \( arcsin(x) \) est la fonction réciproque de la fonction \( sin(x) \), elle est définie de la manière suivante :

$$ \forall x \in [-1, \hspace{0.2em} 1], \enspace f(x) = arcsin(x) = sin^{-1}(x) $$

À partir de cette définition, effectuons une intégration par parties avec :

$$ \ \Biggl \{ \begin{gather*} u(t) = arcsin(t) \\ v'(t) = dt \end{gather*} $$
$$ \Biggl \{ \begin{gather*} u'(t) = \frac{dt}{\sqrt{1-t^2}} \\ v(t) = t \end{gather*} $$

On a :

$$\int^x arcsin(t) \ dt = \Biggl[t \ arcsin(t) \Biggr]^x -\int^x \frac{t}{\sqrt{1-t^2}} \ dt$$
$$\int^x arcsin(t) \ dt = x \ arcsin(x) - \int^x \frac{-2t}{2\sqrt{1-t^2}} \ dt$$

Soit finalement,

$$ \forall x \in [-1, \hspace{0.2em} 1], $$
$$ \int^x arcsin(t) \ dt = x \ arcsin(x) + \sqrt{1-x^2}$$

La fonction arccosinus \(: arccos(x)\)

La fonction \( arccos(x) \) est la fonction réciproque de la fonction \( cos(x) \), elle est définie de la manière suivante :

$$ \forall x \in [-1, \hspace{0.2em} 1], \enspace f(x) = arccos(x) = cos^{-1}(x) $$

De la même manière que plus haut pour la fonction \(arcsin(x)\), on fait une intégration par parties avec : :

$$ \ \Biggl \{ \begin{gather*} u(t) = arccos(t) \\ v'(t) = dt \end{gather*} $$
$$ \Biggl \{ \begin{gather*} u'(t) = -\frac{dt}{\sqrt{1-t^2}} \\ v(t) = t \end{gather*} $$

On a :

$$\int^x arccos(t) \ dt = \Biggl[t \ arccos(t) \Biggr]^x -\int^x \frac{-t}{\sqrt{1-t^2}} \ dt$$
$$\int^x arccos(t) \ dt = x \ arccos(x) - \int^x \frac{-2t}{2\sqrt{1-t^2}} \ dt$$

Soit finalement,

$$ \forall x \in [-1, \hspace{0.2em} 1], $$
$$ \int^x arccos(t) \ dt = x \ arccos(x) - \sqrt{1-x^2}$$

La fonction arctangente \( : {\displaystyle \int^x} arctan(t) \ dt \)

La fonction \( arctan(x) \) est la fonction réciproque de la fonction \( tan(x) \), elle est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = arctan(x) = tan^{-1}(x) $$

À partir de cette définition, effectuons une intégration par parties avec :

$$ \ \Biggl \{ \begin{gather*} u(t) = arctan(t) \\ v'(t) = dt \end{gather*} $$
$$ \Biggl \{ \begin{gather*} u'(t) = \frac{dt}{1+t^2} \\ v(t) = t \end{gather*} $$

On a :

$$\int^x arctan(t) \ dt = \Biggl[t \ arctan(t) \Biggr]^x -\int^x \frac{t}{1+t^2} \ dt$$
$$\int^x arctan(t) \ dt = x \ arctan(x) - \frac{1}{2} \int^x \frac{2t}{1+t^2} \ dt$$
$$\int^x arctan(t) \ dt = x \ arctan(x) - \frac{1}{2} ln\left(1+x^2 \right)$$

Soit finalement,

$$ \forall x \in \mathbb{R}, $$
$$ \int^x arctan(t) \ dt = x \ arctan(x) - \frac{1}{2} ln\left(1+x^2 \right)$$

Les fonctions trigonométriques sécantes \( : cosec(x), sec(x), cotan(x)\)

La fonction cosécante \( : {\displaystyle \int^x} cosec(t) \ dt \)

  1. Par les fonctions trigonométriques sécantes

  2. La fonction \( cosec(x) \) est définie de la manière suivante :

    $$ \forall k \in \mathbb{Z}, \ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ k\pi \bigr \} \Bigr], \enspace f(x) = cosec(x) = \frac{1}{sin(x)} $$

    On remarque tout d'abord que :

    $$cosec(x) = cosec(x)\frac{cosec(x) - cotan(x)}{cosec(x) - cotan(x)}$$
    $$cosec(x) = \frac{cosec^2(x) - cosec(x)cotan(x)}{cosec(x) - cotan(x)}$$

    Or,

    $$ \Biggl \{ \begin{gather*} cosec^2(x) = -cotan(x)' \\ -cosec(x)cotan(x) = cosec(x)' \end{gather*} $$

    Soit maintenant,

    $$cosec(x) = \frac{-cotan'(x) + cosec'(x) }{cosec(x) -cotan(x)}$$
    $$cosec(x) = \frac{(cosec(x) -cotan(x))'}{cosec(x) -cotan(x)}$$

    Alors, on peut intégrer directement et :

    $$\int^x cosec(t) \ dt = \int^x \frac{\bigl(cosec(t) -cotan(t) \bigr)'}{cosec(t) -cotan(t)} \ dt $$

    Soit finalement,

    $$ \forall k \in \mathbb{Z}, \ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ k\pi \bigr \} \Bigr],$$
    $$\int^x cosec(t) \ dt = ln \left|cosec(x) -cotan(x) \right|$$
  3. En passant par les règles de Bioche

  4. En passant par les règles de Bioche, on peut poser le changement de variable :

    $$ u = tan\left(\frac{t}{2} \right) $$
    $$ \left \{ \begin{gather*} u = tan\left(\frac{t}{2} \right) \\ du = \frac{1}{2} \left(1 + tan^2\left(\frac{t}{2} \right) \right) dt \Longleftrightarrow du = \frac{1}{2} \left(1 + u^2 \right) \ dt \Longleftrightarrow dt = \frac{2du}{1 + u^2} \end{gather*} \right \} $$

    Alors l'intégrale :

    $$\int^x cosec(t) \ dt = \int^x \frac{1}{sin(t)} \ dt $$

    devient :

    $$\int^x cosec(t) \ dt = \int^x \frac{1 + u^2}{2u} \ \frac{2du}{1 + u^2} $$
    $$\int^x cosec(t) \ dt = \int^x \frac{du}{u} $$

    Et finalement,

    $$ \forall k \in \mathbb{Z}, \ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ k\pi \bigr \} \Bigr],$$
    $$\int^x cosec(t) \ dt = ln \left| tan \left( \frac{x}{2}\right) \right| $$

La fonction sécante \( : {\displaystyle \int^x} sec(t) \ dt \)

La fonction \( sec(x) \) est définie de la manière suivante :

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], \enspace f(x) = sec(x) = \frac{1}{cos(x)} $$
  1. Par les fonctions trigonométriques sécantes

  2. On remarque tout d'abord que :

    $$sec(x) = sec(x)\frac{sec(x) + tan(x)}{sec(x) + tan(x)}$$
    $$sec(x) = \frac{sec^2(x) + sec(x)tan(x)}{sec(x) + tan(x)}$$

    Or,

    $$ \Biggl \{ \begin{gather*} sec^2(x) = tan'(x) \\ sec(x)tan(x)= sec'(x) \end{gather*} $$

    Soit maintenant,

    $$sec(x) = \frac{tan'(x) + sec'(x) }{sec(x) + tan(x)}$$
    $$sec(x) = \frac{(sec(x) + tan(x))'}{sec(x) + tan(x)}$$

    Alors, on peut intégrer directement et :

    $$\int^x sec(t) \ dt = \int^x \frac{(sec(x) + tan(x))'}{sec(x) + tan(x)} \ dt $$

    Soit finalement,

    $$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], $$
    $$\int^x sec(t) \ dt = ln \left|sec(x) + tan(x) \right|$$
  3. En passant par les règles de Bioche

  4. De la même manière que précédemment, on pose le même changement de variable:

    $$ u = tan\left(\frac{t}{2} \right) $$
    $$ \left \{ \begin{gather*} u = tan\left(\frac{t}{2} \right) \\ du = \frac{1}{2} \left(1 + tan^2\left(\frac{t}{2} \right) \right) dt \Longleftrightarrow du = \frac{1}{2} \left(1 + u^2 \right) \ dt \Longleftrightarrow dt = \frac{2du}{1 + u^2} \end{gather*} \right \} $$

    Alors l'intégrale :

    $$\int^x sec(t) \ dt = \int^x \frac{1}{cos(t)} \ dt $$

    devient :

    $$\int^x sec(t) \ dt = \int^x \frac{1 + u^2}{1 - u^2} \ \frac{2du}{1 + u^2} $$
    $$\int^x sec(t) \ dt = 2\int^x \frac{du}{1 - u^2} $$
    $$\int^x sec(t) \ dt = 2\int^x \frac{du}{(1 - u)(1 + u)} $$

    Après décomposition en éléments simples, on a :

    $$\int^x sec(t) \ dt = 2 \times \frac{1}{2} ln \left| \frac{1 + u}{1 - u} \right| $$

    En réhabilitant maintenant la variable de départ, on a :

    $$\int^x sec(t) \ dt = ln \left| \frac{1 + tan\left(\frac{x}{2} \right)}{1 - tan\left(\frac{x}{2} \right)} \right| $$

    Or, on sait avec les formules d'additions trigonométriques, que :

    $$ tan(\alpha + \beta) = \frac{tan(\alpha) + tan(\beta)}{1 - tan(\alpha)tan(\beta) }$$
    $$\int^x sec(t) \ dt = ln \left| \frac{ tan\left(\frac{\pi}{4} \right) + tan\left(\frac{x}{2} \right)}{1 - tan\left(\frac{\pi}{4} \right) tan\left(\frac{x}{2} \right)} \right| $$

    On obtient finalement,

    $$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ \frac{\pi}{2} + k\pi \Bigr \} \biggr], $$
    $$\int^x sec(t) \ dt = ln \left| tan\left( \frac{x}{2} + \frac{\pi}{4} \right) \right| $$

La fonction cotangente \( : {\displaystyle \int^x} cotan(t) \ dt \)

La fonction \( cotan(x) \) est définie de la manière suivante :

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ k\pi \bigr \} \Bigr] , \enspace f(x) = cotan(x) = \frac{cosec(x)}{sec(x)} = \frac{1}{tan(x)} $$

À partir de cette définition, on a :

$$\int^x cotan(t) \ dt = \int^x \frac{cosec(t)}{sec(t)} \ dt $$

Soit,

$$\int^x cotan(t) \ dt = \int^x \frac{cos(t)}{sin(t)} \ dt $$

Effectuons le changement de variable suivant : \(u = sin(t)\).

On a maintenant :

$$ \begin{gather*} \int^x cotan(t) \ dt = \int^x \frac{du}{u} \end{gather*} $$
$$ avec \enspace \Biggl \{ \begin{gather*} u = sin(t) \\ du = cos(t) \ dt \end{gather*} $$

Soit finalement,

$$ \forall k \in \mathbb{Z}, \enspace \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \Bigl \{ k\pi \Bigr \} \biggr] , $$
$$ \int^x cotan(t) \ dt = - ln|sin(x)| = ln|cosec(x)|$$

Les fonctions trigonométriques sécantes réciproques \( : arccosec(x), arcsec(x), arccotan(x)\)

La fonction arccosécante \( : {\displaystyle \int^x} arccosec(t) \ dt \)

La fonction \( arccosec(x) \) est la fonction réciproque de la fonction \( cosec(x) \), elle est définie de la manière suivante :

$$ \forall x \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1] \cup[1, \hspace{0.1em} +\infty[ , \enspace f(x) = arccosec(x) = cosec^{-1}(x) $$

À partir de cette définition, effectuons une intégration par parties avec :

$$ \ \Biggl \{ \begin{gather*} u(t) = arccosec(t) \\ v'(t) = dt \end{gather*} $$
$$ \left \{ \begin{gather*} u'(t) = - \frac{dt}{ x^2} \times \frac{1}{ \sqrt{1 - \frac{1}{ x^2}}} \\ v(t) = t \end{gather*} \right \} $$

On a :

$$\int^x arccosec(t) \ dt = \Biggl[t \ arccosec(t) \Biggr]^x +\int^x \frac{1}{ t^2} \times \frac{t}{ \sqrt{1 - \frac{1}{ t^2}}} \ dt$$
$$\int^x arccosec(t) \ dt = \Biggl[t \ arccosec(t) \Biggr]^x +\int^x \frac{1}{ |t|^2} \times \frac{t}{ \sqrt{1 - \frac{1}{ t^2}}} \ dt$$
$$\int^x arccosec(t) \ dt = \Biggl[t \ arccosec(t) \Biggr]^x +\int^x \frac{t}{ |t|\sqrt{t^2 - 1}} \ dt$$

Pour gérer la valeur absolue, on peut poser :

$$ \Biggl \{ \begin{gather*} w = |t| \\ dw = \frac{t}{|t|}dt \ \end{gather*}$$
$$\int^x arccosec(t) \ dt = \Biggl[t \ arccosec(t) \Biggr]^x +\int^x \frac{1}{\sqrt{w^2 - 1}} \ dw$$

On a calculé plus haut cette intégrale :

$$\int^x arccosec(t) \ dt = \Biggl[t \ arccosec(t) \Biggr]^{x} +\Biggl[ ln \left|\sqrt{w^2-1} + w \right| \Biggr]^{|x|} $$
$$\int^x arccosec(t) \ dt = x \ arccosec(x) + ln \left|\sqrt{x^2-1} + |x| \right| $$

Soit finalement,

$$ \forall x \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1] \cup[1, \hspace{0.1em} +\infty[ , $$
$$\int^x arccosec(t) \ dt = x \ arccosec(x) + ln \left|\sqrt{x^2-1} + |x| \right|$$

La fonction arcsécante \( : {\displaystyle \int^x} arcsec(t) \ dt \)

La fonction \( arcsec(x) \) est la fonction réciproque de la fonction \( sec(x) \), elle est définie de la manière suivante :

$$ \forall x \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1] \cup[1, \hspace{0.1em} +\infty[ , \enspace f(x) = arcsec(x) = sec^{-1}(x) $$

À partir de cette définition, en faisant la même intégration par parties qu'avec la fonction \(arccosec(x)\) plus haut :

$$ \ \Biggl \{ \begin{gather*} u(t) = arcsec(t) \\ v'(t) = dt \end{gather*} $$
$$ \left \{ \begin{gather*} u'(t) = \frac{dt}{ x^2} \times \frac{1}{ \sqrt{1 - \frac{1}{ x^2}}} \\ v(t) = t \end{gather*} \right \} $$

On obtient directement,

$$ \forall x \in \mathbb{R}, $$
$$\int^x arcsec(t) \ dt = x \ arcsec(x) - ln \left|\sqrt{x^2-1} + |x| \right| $$

La fonction arccotangente \( : {\displaystyle \int^x} arccotan(t) \ dt \)

La fonction \( arccotan(x) \) est la fonction réciproque de la fonction \( cotan(x) \), elle est définie de la manière suivante :

$$ \forall x \in \mathbb{R} , \enspace f(x) = arccotan(x) = cotan^{-1}(x) $$

À partir de cette définition, en faisant la même intégration par parties qu'avec la fonction \(arccosec(x)\) plus haut :

$$ \ \Biggl \{ \begin{gather*} u(t) = arccotan(t) \\ v'(t) = dt \end{gather*} $$
$$ \left \{ \begin{gather*} u'(t) = -\frac{dt}{ 1 + x^2} \\ v(t) = t \end{gather*} \right \} $$

On obtient directement,

$$ \forall x \in \mathbb{R}, $$
$$\int^x arccotan(t) \ dt = x \ arccotan(x) + \frac{1}{2} ln\left(1+x^2 \right) $$

Les fonctions hyperboliques \( : sinh(x), cosh(x), tanh(x)\)

La fonction sinus hyperbolique \( : {\displaystyle \int^x} sinh(t) \ dt \)

La fonction \( sinh(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = sinh(x) = \frac{e^x - e^{-x} }{2} $$

De la même manière que plus haut pour la fonction \(sin(x)\), on obtient directement :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x sinh(t) \ dt = cosh(x)$$

La fonction cosinus hyperbolique \( : {\displaystyle \int^x} cosh(t) \ dt \)

La fonction \( cosh(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = cosh(x) = \frac{e^x + e^{-x} }{2} $$

De la même manière que plus haut pour la fonction \(sinh(x)\), on obtient directement :

$$ \forall x \in \mathbb{R}, $$
$$ \int^x cosh(t) \ dt = sinh(x)$$

La fonction tangente hyperbolique \( : {\displaystyle \int^x} tanh(t) \ dt \)

La fonction \( tanh(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} $$

À partir de cette définition, on a :

$$\int^x tanh(t) \ dt = \int^x \frac{sinh(t)}{cosh(t)} \ dt $$

De la même manière que plus haut avec la fonction \(tan(x)\), on effectue la changement de variable : \(u = cosh(t)\).

On finit par obtenir que,

$$ \forall x \in \mathbb{R}, $$
$$ \int^x tanh(t) \ dt = ln|cosh(x)| = -ln|sech(x)|$$

Les fonctions hyperboliques réciproques \( : arcsinh(x), arccosh(x) ,arctanh(x)\)

La fonction arcsinus hyperbolique \( : {\displaystyle \int^x} arcsinh(t) \ dt \)

La fonction \( arcsinh(x) \) est la fonction réciproque de la fonction \( sinh(x) \), elle est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = arcsinh(x)= sinh^{-1}(x) $$

Par ailleurs, elle peut aussi être définie explicitement par :

$$ \forall x \in \mathbb{R}, \ $$
$$ arcsinh(x) = ln \left|x + \sqrt{x^2 + 1}\right| $$

(\(\Longrightarrow\) voir la démonstration)

De la même manière que plus haut, on fait une intégration par parties avec : :

$$ \ \Biggl \{ \begin{gather*} u(t) = arcsinh(t) \\ v'(t) = dt \end{gather*} $$
$$ \Biggl \{ \begin{gather*} u'(t) = \frac{dt}{\sqrt{1+t^2}} \\ v(t) = t \end{gather*} $$

On a :

$$\int^x arcsinh(t) \ dt = \Biggl[t \ arcsinh(t) \Biggr]^x -\int^x \frac{t}{\sqrt{1+t^2}} \ dt$$
$$\int^x arcsinh(t) \ dt = x \ arcsinh(x) - \int^x \frac{2t}{2\sqrt{1+t^2}} \ dt$$

Soit finalement,

$$ \forall x \in \mathbb{R}, $$
$$ \int^x arcsinh(t) \ dt = x \ arcsinh(x) - \sqrt{1+x^2}$$

La fonction arccosinus hyperbolique \( : {\displaystyle \int^x} arccosh(t) \ dt \)

La fonction \( arccosh(x) \) est la fonction réciproque de la fonction \( cosh(x) \), elle est définie de la manière suivante :

$$ \forall x \in [1, \hspace{0.1em} +\infty[, \enspace f(x) = arccosh(x) = cosh^{-1}(x) $$

Par ailleurs, elle peut aussi être définie explicitement par :

$$ \forall x \in [1, \hspace{0.1em} +\infty[, $$
$$arccosh(x) = ln \Bigl| x + \sqrt{x^2 - 1}\Bigr| $$

(\(\Longrightarrow\) voir la démonstration)

De la même manière que plus haut, on fait une intégration par parties avec : :

$$ \ \Biggl \{ \begin{gather*} u(t) = arccosh(t) \\ v'(t) = dt \end{gather*} $$
$$ \Biggl \{ \begin{gather*} u'(t) = \frac{dt}{\sqrt{t^2 - 1}} \\ v(t) = t \end{gather*} $$

On a :

$$\int^x arccosh(t) \ dt = \Biggl[t \ arccosh(t) \Biggr]^x -\int^x \frac{t}{\sqrt{t^2 - 1}} \ dt$$
$$\int^x arccosh(t) \ dt = x \ arccosh(x) - \int^x \frac{2t}{2\sqrt{t^2-1}} \ dt$$

Soit finalement,

$$ \forall x \in \mathbb{R}, $$
$$ \int^x arccosh(t) \ dt = x \ arccosh(x) - \sqrt{x^2-1}$$

La fonction arctangente hyperbolique \( : {\displaystyle \int^x} arctanh(t) \ dt \)

La fonction \( arctanh(x) \) est la fonction réciproque de la fonction \( tanh(x) \), elle est définie de la manière suivante :

$$ \forall x \in \hspace{0.04em} ]-1, \hspace{0.1em} 1[, \enspace f(x) = arctanh(x) = tanh^{-1}(x) $$

Par ailleurs, elle peut aussi être définie explicitement par :

$$ \forall x \in \hspace{0.04em} ]-1, \hspace{0.1em} 1[, $$
$$ arctanh(x) = \frac{1}{2} ln \left| \frac{1 + x}{1 - x} \right| $$

(\(\Longrightarrow\) voir la démonstration)

À partir de cette définition, effectuons une intégration par parties avec :

$$ \ \Biggl \{ \begin{gather*} u(t) = arctanh(t) \\ v'(t) = dt \end{gather*} $$
$$ \Biggl \{ \begin{gather*} u'(t) = \frac{dt}{1-x^2} \\ v(t) = t \end{gather*} $$

On a :

$$\int^x arctanh(t) \ dt = \Biggl[t \ arctanh(t) \Biggr]^x -\int^x \frac{t}{1-t^2} \ dt$$
$$\int^x arctanh(t) \ dt = x \ arctanh(x) + \frac{1}{2}\int^x \frac{-2t}{1-t^2} \ dt$$

Soit finalement,

$$ \forall x \in [-1, \hspace{0.2em} 1], $$
$$ \int^x arctanh(t) \ dt = x \ arctanh(x) + ln|1 - x^2|$$

Les fonctions sécantes hyperboliques \( : cosech(x), sech(x), cotanh(x)\)

La fonction cosécante hyperbolique \( : {\displaystyle \int^x} cosech(t) \ dt \)

La fonction \( cosech(x) \) est définie de la manière suivante :

$$ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ 0 \bigr \} \Bigr], \enspace f(x) = cosech(x) = \frac{1}{sinh(x)} $$
  1. Par les fonctions trigonométriques sécantes

  2. En appliquant le même raisonnement qu'avec la fonction \(cosec(x)\) plus haut :

    $$ \Biggl \{ \begin{gather*} cosech^2(x) = -cotanh(x)' \\ -cosech(x)cotanh(x) = cosech(x)' \end{gather*} $$

    On obtient directement :

    $$ \forall x \in \hspace{0.04em} \mathbb{R}^*, $$
    $$\int^x cosech(t) \ dt = ln \left|cosech(x) -cotanh(x) \right|$$
  3. En passant par le changement de variable \(u = e^t\)

  4. On passe cette fois-ci par le changement de variable suivant :

    $$ \left \{ \begin{gather*} u = e^t \\ du = e^t \ dt \Longleftrightarrow dt = \frac{du}{u} \end{gather*} \right \} $$

    Alors l'intégrale :

    $$\int^x cosech(t) \ dt = \int^x \frac{1}{sinh(t)} \ dt = \int^x \frac{2}{e^t - e^{-t}} \ dt $$

    devient :

    $$\int^x cosech(t) \ dt = \int^x \frac{2}{u - u^{-1}} \ \frac{du}{u} $$
    $$\int^x cosech(t) \ dt = 2 \int^x \frac{du}{u^2 - 1} $$

    Après décomposition en éléments simples, on a :

    $$\int^x cosech(t) \ dt = 2 \times \frac{1}{2} ln \left| \frac{u + 1}{u - 1} \right| $$

    En réhabilitant maintenant la variable de départ, on a :

    $$\int^x cosech(t) \ dt = 2 \times \frac{1}{2} ln \left| \frac{e^x + 1}{e^x - 1} \right| $$
    $$\int^x cosech(t) \ dt = 2 \times \frac{1}{2} ln \left| \frac{(e^{\frac{x}{2}} + e^{-\frac{x}{2}})}{e^{\frac{x}{2}}(e^{\frac{x}{2}} - e^{-\frac{x}{2}})} \right| $$
    $$\int^x cosech(t) \ dt = 2 \times \frac{1}{2} ln \left| \frac{e^{\frac{x}{2}} + e^{-\frac{x}{2}}}{e^{\frac{x}{2}} - e^{-\frac{x}{2}}} \right| $$
    $$\int^x cosech(t) \ dt = ln \left| \left( \frac{1}{tanh \left(\frac{x}{2} \right) } \right) \right| $$

    On obtient finalement :

    $$ \forall x \in \hspace{0.04em} \mathbb{R}^*,$$
    $$\int^x cosech(t) \ dt = ln \left| cotanh\left(\frac{x}{2} \right) \right|$$

La fonction sécante hyperbolique \( : {\displaystyle \int^x} sech(t) \ dt \)

La fonction \( sech(x) \) est définie de la manière suivante :

$$ \forall x \in \mathbb{R}, \enspace f(x) = sech(x) = \frac{1}{cosh(x)} $$
  1. Par les fonctions trigonométriques sécantes

  2. $$ \int^x sech(t) \ dt = \int^x \frac{1}{cosh(t)} \ dt $$
    $$ \int^x sech(t) \ dt = \int^x \frac{cosh(t)}{cosh^2(t)} \ dt $$
    $$ \int^x sech(t) \ dt = \int^x \frac{cosh(t)}{1 + sinh^2(t)} \ dt $$

    Effectuons le changement de variable suivant : \(u = sinh(t)\).

    On a maintenant :

    $$ \begin{gather*} \int^x sech(t) \ dt = \int^x \frac{du}{1 + u^2} \end{gather*} $$
    $$ avec \enspace \Biggl \{ \begin{gather*} u = sinh(t) \\ du = cosh(t) \ dt \end{gather*} $$

    Soit finalement,

    $$ \forall x \in \mathbb{R}, $$
    $$\int^x sech(t) \ dt = arctan(sinh(x)) $$
  3. En passant par le changement de variable \(u = e^t\)

  4. De la même manière que précédemment, on passe par le changement de variable suivant :

    $$ \left \{ \begin{gather*} u = e^t \\ du = e^t \ dt \Longleftrightarrow dt = \frac{du}{u} \end{gather*} \right \} $$

    Alors l'intégrale :

    $$\int^x sech(t) \ dt = \int^x \frac{1}{cosh(t)} \ dt = \int^x \frac{2}{e^t + e^{-t}} \ dt $$

    devient :

    $$\int^x sech(t) \ dt = \int^x \frac{2}{u + u^{-1}} \ \frac{du}{u} $$
    $$\int^x sech(t) \ dt = 2 \int^x \frac{du}{u^2 + 1} $$
    $$\int^x sech(t) \ dt = 2 \ arctan(u) $$

    En réhabilitant maintenant la variable de départ, on obtient finalement :

    $$ \forall x \in \mathbb{R}, $$
    $$ \int^x sech(t) \ dt = 2 \ arctan(e^x) $$

La fonction cotangente hyperbolique \( : {\displaystyle \int^x} cotanh(t) \ dt \)

La fonction \( cotanh(x) \) est définie de la manière suivante :

$$ \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \hspace{0.2em} \bigl \{ 0 \bigr \} \Bigr], \enspace f(x) = cotanh(x) = \frac{1}{tanh(x)} $$

À partir de cette définition, on a :

$$\int^x cotanh(t) \ dt = \int^x \frac{cosh(t)}{sinh(t)} \ dt $$

De la même manière que plus haut, on effectue la changement de variable : \(u = sinh(t)\).

On a maintenant :

$$ \begin{gather*} \int^x cotanh(t) \ dt = \int^x \frac{du}{u} \end{gather*} $$
$$ avec \enspace \Biggl \{ \begin{gather*} u = sinh(t) \\ du = cosh(t) \ dt \end{gather*} $$

On finit par obtenir que,

$$ \forall x \in \Bigl[ \mathbb{R} \hspace{0.1em}\backslash \hspace{0.2em} \left \{ 0 \right \} \Bigr], $$
$$ \int^x cotanh(t) \ dt = ln|sinh(x)| = -ln|cosech(x)|$$

Les fonctions sécantes hyperboliques réciproques \( : arccosech(x), arcsech(x),arccotanh(x)\)

La fonction arccosécante hyperbolique \( : {\displaystyle \int^x} arccosech(t) \ dt \)

La fonction \( arccosech(x) \) est la fonction réciproque de la fonction \( cosech(x) \), elle est définie de la manière suivante :

$$\forall x \in \Bigl[ \mathbb{R} \hspace{0.1em} \backslash \hspace{0.2em} \left \{ 0 \right \} \Bigr] , \enspace f(x) = arccosech(x) = cosech^{-1}(x) $$

À partir de cette définition, effectuons une intégration par parties avec :

$$ \ \Biggl \{ \begin{gather*} u(t) = arccosech(t) \\ v'(t) = dt \end{gather*} $$
$$ \left \{ \begin{gather*} u'(t) = - \frac{dt}{ x^2} \times \frac{1}{ \sqrt{1 + \frac{1}{ x^2}}} \\ v(t) = t \end{gather*} \right \} $$
$$\int^x arccosech(t) \ dt = \Biggl[t \ arccosech(t) \Biggr]^x +\int^x \frac{1}{ t^2} \times \frac{t}{ \sqrt{1 + \frac{1}{ t^2}}} \ dt$$
$$\int^x arccosech(t) \ dt = \Biggl[t \ arccosech(t) \Biggr]^x +\int^x \frac{1}{ |t|^2} \times \frac{t}{ \sqrt{1 + \frac{1}{ x^2}}} \ dt$$
$$\int^x arccosech(t) \ dt = \Biggl[t \ arccosech(t) \Biggr]^x +\int^x \frac{t}{ |t|\sqrt{t^2 + 1}} \ dt$$

Idem que plus haut, on pose :

$$ \Biggl \{ \begin{gather*} w = |t| \\ dw = \frac{t}{|t|}dt \ \end{gather*}$$
$$\int^x arccosech(t) \ dt = \Biggl[t \ arccosech(t) \Biggr]^x +\int^x \frac{1}{\sqrt{w^2 + 1}} \ dw$$

On a calculé plus haut cette intégrale :

$$\int^x arccosech(t) \ dt = \Biggl[t \ arccosech(t) \Biggr]^x +\Biggl[ ln \left|\sqrt{w^2+1} + w \right| \Biggr]^{|x|} $$
$$\int^x arccosech(t) \ dt = x \ arccosech(x) + ln \left|\sqrt{x^2+1} + |x| \right| $$

Soit finalement,

$$ \forall x \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1] \cup[1, \hspace{0.1em} +\infty[ , $$
$$\int^x arccosech(t) \ dt = x \ arccosech(x) + ln \left|\sqrt{x^2+1} + |x| \right|$$

La fonction arcsécante hyperbolique \( : {\displaystyle \int^x} arcsech(t) \ dt \)

La fonction \( arcsech(x) \) est la fonction réciproque de la fonction \( sech(x) \), elle est définie de la manière suivante :

$$ \forall x \in \hspace{0.04em} ]0, \hspace{0.1em} 1] , \enspace f(x) = arcsech(x) = sech^{-1}(x) $$

À partir de cette définition, en faisant la même intégration par parties qu'avec la fonction \(arccosech(x)\) plus haut :

$$ \ \Biggl \{ \begin{gather*} u(t) = arcsech(t) \\ v'(t) = dt \end{gather*} $$
$$ \left \{ \begin{gather*} u'(t) = - \frac{dt}{ x^2} \times \frac{1}{ \sqrt{\frac{1}{ x^2} - 1}} \\ v(t) = t \end{gather*} \right \} $$

On obtient directement,

$$ \forall x \in \hspace{0.04em} ]0, \hspace{0.1em} 1] , \enspace f(x) = arcsech(x) = sech^{-1}(x) $$
$$\int^x arcsech(t) \ dt = x \ arcsec(x) + arcsin(x) $$

La fonction arccotangente hyperbolique \( : {\displaystyle \int^x} arccotanh(t) \ dt \)

La fonction \( arccotanh(x) \) est la fonction réciproque de la fonction \( cotanh(x) \), elle est définie de la manière suivante :

$$ \forall \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1[ \hspace{0.1em} \cup \hspace{0.1em} ]1, \hspace{0.1em} +\infty[ , \enspace f(x) = arccotanh(x) =cotanh^{-1}(x) $$

À partir de cette définition, en faisant la même intégration par parties qu'avec la fonction \(arccosech(x)\) plus haut :

$$ \ \Biggl \{ \begin{gather*} u(t) = arccotanh(t) \\ v'(t) = dt \end{gather*} $$
$$ \left \{ \begin{gather*} u'(t) = \frac{dt}{1-x^2} \\ v(t) = t \end{gather*} \right \} $$

On obtient directement,

$$ \forall \in \hspace{0.04em} ]-\infty, \hspace{0.1em} -1[ \hspace{0.1em} \cup \hspace{0.1em} ]1, \hspace{0.1em} +\infty[ , $$
$$\int^x arccotanh(t) \ dt = x \ arccotanh(x) + ln \left|1-x^2 \right| $$

Récapitulatif des primitives de fonctions trigonométriques

Scroll top Retour en haut de page