French flag Arrows English flag
Moon Arrows Sun
Current
Arrows
Other

The properties of converge series

Multiplication by a reel number
$$ \forall a_n, \enspace \forall \lambda \in \hspace{0.05em} \mathbb{R},$$
$$ \sum a_n \text{ converges } \Longrightarrow \sum (\lambda \ a_n) \text{ converges } $$
$$ \Longrightarrow $$
$$ \sum_{k = 0}^{+ \infty} (\lambda \ a_k) = \lambda \sum_{k = 0}^{+ \infty} a_k $$
Addition
  1. If both series converge

  2. $$ \forall \bigl(a_n, b_n\bigr),$$
    $$ \sum a_n \text{ and } \sum b_n \text{ converges } \Longrightarrow \sum (a_n + b_n) \text{ converges } $$
    $$ \Longrightarrow $$
    $$ \sum_{k = 0}^{+ \infty} (a_k + b_k) = \sum_{k = 0}^{+ \infty} a_k + \sum_{k = 0}^{+ \infty} b_k $$
  3. If one of the series diverge

  4. $$ \forall \bigl(a_n, b_n\bigr),$$
    $$ \sum a_n \text{ converges and } \sum b_n \text{ diverges } \Longrightarrow \sum (a_n + b_n) \text{ diverges } $$
Identification of series having the same nature

Let \((c_n, d_n)\) be two sequences having terms with a constant sign.

$$ \forall \bigl(c_n, d_n\bigr), \ l \in \mathbb{R}^*_+, $$
$$ \lim_{n \to + \infty} \left[ \frac{c_n}{d_n} \right] = l > 0 \Longrightarrow \text{\(\sum c_n\) et \(\sum d_n\) have the same nature} $$

Moreover, if \((l = 1)\) both sequences are equivalent, then:

$$ c_n \sim d_n \Longrightarrow \text{\(\sum c_n\) et \(\sum d_n\) have the same nature} $$

Demonstrations

Multiplication by a reel number

Let \( \bigl(a_n, b_n\bigr) \) be two numerical sequences and \(\lambda \in \mathbb{R}\) a reel number.

If \(\sum a_n\) converge, that is to say that the series tends towards a certain limit \(l\):

$$ \exists! \ l, \in \mathbb{R}, \ \lim_{n \to + \infty} \sum a_n = l $$

Then, multiplying both sides by \(\lambda\), we do have:

$$ \lambda \lim_{n \to + \infty} \sum a_n = \lambda \ l $$

Now, the limit of a product is the product of the limits:

$$ \forall f, \ \forall \lambda \in \mathbb{R},$$
$$ lim (\lambda f) = \lambda \ lim (f)$$

Thus,

$$ \lambda \lim_{n \to + \infty} \sum a_n = \lim_{n \to + \infty} \biggl[ \lambda \sum a_n \biggr] = \lambda \ l $$

Finally, we know from the properties of sums that:

$$ \sum (\lambda \ a_n) = \lambda \sum a_n $$

And we can put \(\lambda\) inside the sum,

$$ \lambda \lim_{n \to + \infty} \sum a_n = \lim_{n \to + \infty} \biggl[ \sum (\lambda \ a_n) \biggr] = \lambda \ l $$

Therefore, we obtain that \(\sum (\lambda \ a_n)\) converge towards \(\lambda \ l\).


And as a result,

$$ \forall a_n, \enspace \forall \lambda \in \hspace{0.05em} \mathbb{R},$$
$$ \sum a_n \text{ converges } \Longrightarrow \sum (\lambda \ a_n) \text{ converges } $$
$$ \Longrightarrow $$
$$ \sum_{k = 0}^{+ \infty} (\lambda \ a_k) = \lambda \sum_{k = 0}^{+ \infty} a_k $$

Addition

  1. If both series converge

  2. In the same way as before, if \(\sum a_n\) and \(\sum b_n\) converge, then:

    $$ \exists! \ (l, l') \in \hspace{0.05em} \mathbb{R}^2, \ \left \{ \begin{gather*} \lim_{n \to + \infty} \sum a_n = l \\ \\ \lim_{n \to + \infty} \sum b_n = l' \end{gather*} \right \} $$

    So by adding the two expressions, we have:

    $$ \lim_{n \to + \infty} \sum a_n + \lim_{n \to + \infty} \sum b_n = l + l' $$

    The limit of a sum being the sum of the limits:

    $$ \forall (f, g),$$
    $$ lim (f+g) = lim (f) + lim (g) $$

    So now we have this:

    $$ \lim_{n \to + \infty} \biggl[ \sum a_n + \sum b_n \biggr] = l + l' $$
    $$ \lim_{n \to + \infty} \biggl[ \sum (a_n + b_n) \biggr] = l + l' $$

    Therefore, we obtain that \(\sum (a_k + b_k) \) converge towards \((l + l')\).


    So,

    $$ \forall \bigl(a_n, b_n\bigr),$$
    $$ \sum a_n \text{ and } \sum b_n \text{ converges } \Longrightarrow \sum (a_n + b_n) \text{ converges } $$
    $$ \Longrightarrow $$
    $$ \sum_{k = 0}^{+ \infty} (a_k + b_k) = \sum_{k = 0}^{+ \infty} a_k + \sum_{k = 0}^{+ \infty} b_k $$
  3. If one of the series diverge

  4. If one of the series diverge, then:

    $$ \exists! \ l \in \mathbb{R}, \ \left \{ \begin{gather*} \lim_{n \to + \infty} \sum a_n = l \\ \\ \lim_{n \to + \infty} \sum b_n = + \infty \end{gather*} \right \} $$

    So by adding the two expressions, we have:

    $$ \lim_{n \to + \infty} \sum a_n + \lim_{n \to + \infty} \sum b_n = l + \bigl[ + \infty \bigr] $$

    As above, we can arrange it like this:

    $$ \lim_{n \to + \infty} \biggl[ \sum a_n + \sum b_n \biggr] = \underbrace{l + \bigl[ + \infty \bigr]} _{\bigl[ + \infty \bigr]} $$
    $$ \lim_{n \to + \infty} \left[ \sum (a_n + b_n) \right] = + \infty $$

    And finally,

    $$ \forall \bigl(a_n, b_n\bigr),$$
    $$ \sum a_n \text{ converges and } \sum b_n \text{ diverges } \Longrightarrow \sum (a_n + b_n) \text{ diverges } $$

Identification of series having the same nature

Let \((c_n, d_n)\) be two sequences having terms with a constant sign and \(l \in \mathbb{R}^*_+ \) a real number such as:

$$ \lim_{n \to \infty} \left[ \frac{c_n}{d_n} \right] = l $$

Since both sequences have constant terms, then \((l > 0)\). Similarly, it is possible to find two real \((l_1, l_2)\) such as:

$$ l_1 < \frac{c_n}{d_n} < l_2 $$

By multiplying all terms by \(d_n\), we do obtain this:

$$ l_1 \ d_n < c_n < l_2 \ d_n $$
$$ \sum (l_1 \ d_n) < \sum c_n < \sum (l_2 \ d_n) $$

Now, we saw above a property which tells us that for a series associated with a sequence \((a_n)_{n \in \mathbb{N}}\)

$$ \sum a_n \text{ converges } \Longrightarrow \sum (\lambda \ a_n) \text{ converges } $$
  1. if \(\sum d_n\) converge

  2. If \(\sum d_n\) converge, then it is the same thing for \(\sum (l_2 \ d_n)\).

    In addition to that, the series \(\sum c_n\) being lower than a convergent series, it also converges.

    $$ \lim_{n \to + \infty} \left[ \frac{c_n}{d_n} \right] = l > 0 \Longrightarrow \text{\(\sum d_n\) converge \(\Longrightarrow \sum c_n\) converge} $$
  3. if \(\sum d_n\) diverge

  4. Likewise, if \(\sum d_n\) diverge, then it is the same thing for \(\sum (l_1 \ d_n)\).

    In the same way, the series \(\sum c_n\) being greater than a divergent series, it also diverges.

    $$ \lim_{n \to + \infty} \left[ \frac{c_n}{d_n} \right] = l > 0 \Longrightarrow \text{\(\sum d_n\) diverge \(\Longrightarrow \sum c_n\) diverge} $$

And as a result,

$$ \forall \bigl(c_n, d_n\bigr), \ l \in \mathbb{R}^*_+, $$
$$ \lim_{n \to + \infty} \left[ \frac{c_n}{d_n} \right] = l > 0 \Longrightarrow \text{\(\sum c_n\) et \(\sum d_n\) have the same nature} $$

Moreover, if \((l = 1)\) both sequences are equivalent:

$$ \lim_{n \to + \infty} \left[ \frac{c_n}{d_n} \right] = 1 \Longleftrightarrow c_n \sim d_n $$

We will have as a bonus:

$$ c_n \sim d_n \Longrightarrow \text{\(\sum c_n\) et \(\sum d_n\) have the same nature} $$
Scroll top Go to the top of the page