Solving second-degree equations (quadratic equations)
    A quadratic equation is under the form:
    $$ \forall a \in \hspace{0.04em} \mathbb{R}^*, \enspace  \forall (b, c) \in \hspace{0.04em} \mathbb{R}^2, \enspace  \forall X \in \mathbb{R}, $$
    $$ P_2(X)  = aX^2 + bX + c = 0 $$
    
    
    Solutions for \( X \) which \( P_2(X) = 0 \) are called the roots of the polynomial.
    They make it possible to obtain a factorized form.
    Three cases should be considered after calculating the discriminant \( \Delta \): 
    $$ \Delta = b^2 - 4ac \qquad (\Delta) $$
    
    
      -  
        \( \alpha) \) if \( \textcolor{#456E3D}{\Delta > 0}\):two distinct roots \( X_1, \ X_2 \) 
      
 
    
      
      And \( P_2(X) \) can be factorized like this: 
      $$ P_2(X) = a(X - X_1)(X - X_2) $$
      
      -  
        \( \beta) \) if \( \Delta =0\): one double root \( X_0 \)
      
 
      $$ X_0 = \frac{- b}{2a}  $$
      And \( P_2(X) \) can be factorized like this: 
      $$ P_2(X) = a(X - X_0)^2 $$
      
      -  
        \( \gamma) \) if \( \Delta < 0\): two conjugate complex roots \( C_1, \ C_2 \)
      
 
      
      And \( P_2(X) \) can be factorized like this: 
      $$ P_2(X) = a(X - C_1)(X - C_2) $$
    
    
    
    Furthermore, in the general case we will also have these two relationships between the coefficients and the roots:
    
    
    
    Demonstration
    
    A quadratic equation is under the form:
    
    $$ \forall a \in \hspace{0.04em} \mathbb{R}^*, \enspace  \forall (b, c) \in \hspace{0.04em} \mathbb{R}^2, \enspace  \forall X \in \mathbb{R}, $$
    $$ P_2(X)  = aX^2 + bX + c = 0 $$
    We want to solve the equation :
    $$ P_2(X) = 0 $$
    So we start from the equation \( (1) \): 
    $$ aX^2 + bX + c = 0 \qquad (1) $$
    First of all, we factorize it by \( a \):
    $$ a \left[ X^2 + \frac{b}{a}X +  \frac{c}{a} \right] = 0 \qquad (2) $$
    
      However, we notice that the expression in brackets has the same start as \(\left(X + \frac{b}{2a}\right)^2 \), because :
      $$ \left(X + \frac{b}{2a}\right)^2 = X^2 + \frac{b}{a}X + \frac{b^2}{4a^2} $$
      So that,
      $$ \left(X + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2}  = X^2 + \frac{b}{a}X $$
      By rewriting the equation the other way around:
      $$ X^2 + \frac{b}{a}X = \left(X + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} \qquad (3)  $$
     
    We can then transform \( (2) \) by injecting \( (3) \):
    $$ a \left[ \left(X + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} +  \frac{c}{a} \right] = 0 $$
    $$ a \left[ \left(X + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right] = 0 $$
    
  
    
      We then recognize the third quadratic remarkable identity which is: 
      $$ A^2 - B^2 = (A + B)(A - B) $$
      With: 
      $$
        \begin{Bmatrix}
        A = X + \frac{b}{2a}   \\
        B = \sqrt{\frac{b^2 - 4ac}{4a^2}}
        \end{Bmatrix}
        
        $$
     
    Which leads us to:
    $$ a \left(X + \frac{b}{2a} + \sqrt{\frac{b^2 - 4ac}{4a^2}}  \right) \left(X + \frac{b}{2a} -  \sqrt{\frac{b^2 - 4ac}{4a^2}}  \right) = 0 $$
    
    
      For the sake of simplicity, let us set down:
      $$ \Delta = b^2 - 4ac $$
     
    We now have: 
    $$ a \left(X + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}  \right) \left(X + \frac{b}{2a} -  \frac{\sqrt{\Delta}}{2a}   \right) = 0 $$
    
    So:
    $$ a \left[ X - \left( -\frac{b}{2a} - \frac{\sqrt{\Delta}}{2a} \right)  \right] \left[ X - \left( -\frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \right)  \right]   = 0 $$
    $$ a \left[  X - \left( \frac{- b - \sqrt{\Delta}}{2a} \right)  \right]  \left(X - \left(\frac{- b + \sqrt{\Delta}}{2a}  \right)  \right]  = 0 $$
    
    Starting from this result, there will be three cases to take into account.
    
    
      -  
        \( \alpha) \) if \( \textcolor{#456E3D}{\Delta > 0}\):two distinct roots \( X_1, \ X_2 \) 
      
 
      Then \( \sqrt{\Delta} \) exists and the solutions are directly given by: 
      
      Thereby, the polynomial \(P_2(X)\) admits the following factorization: 
      $$ P_2(X) = a(X - X_1)(X - X_2) $$
      
      -  
        \( \beta) \) if \( \Delta =0 \): one double root \( X_0 \)
      
 
      Then \( \sqrt{\Delta} = 0 \) and the root is double: 
      $$  X_0 = \frac{- b}{2a}  $$
      Then the factorization of \(P_2(X)\) becomes: 
      $$  P_2(X) = a(X - X_0)^2  $$
      
      
      -  
        \( \gamma) \) if \( \Delta < 0\): two conjugate complex roots \( C_1, \ C_2 \)
      
 
      Then \( \sqrt{\Delta} \) is not defined on \( \mathbb{R} \). On the other hand, it can exists in the  complex set \( (\mathbb{C}) \).
      
        To solve a such equation in \( \mathbb{C} \) of type: 
        $$ Y=  \sqrt{-\alpha } \Longrightarrow Y^2 = -\alpha  $$
        We do have the following solutions:
        $$ \mathcal{S} =  \left \{Y_{1} = i \sqrt{ |\alpha |} , \ Y_{2} = -i \sqrt{ |\alpha |} \right \} $$
       
      In our case, the solution \( \mathcal{S} \) will become:  
      $$ \left \{ \Delta = i \sqrt{ |\Delta |} , \ \Delta = -i \sqrt{ |\Delta |} \right \}   $$
      We will then have two complex roots:
      
    
      And the factorization will remain of the same form as for the case where \( \Delta > 0 \): 
      $$ P_2(X) = a(X - C_1)(X - C_2)$$
    
    
    
    From the two general formulas for the roots seen above,
    
    We can calculate their sum and product.
    
    
      -  
        
Sum of roots\(: X_1 + X_2 \) 
       
      $$ X_1 + X_2 =  \frac{- b - \sqrt{\Delta}}{2a} + \frac{- b + \sqrt{\Delta}}{2a}$$
      $$ X_1 + X_2 =  \frac{- 2b}{2a} $$
      $$  X_1 + X_2 =  -\frac{b}{a} $$
      -  
        
Roots product\(: X_1  X_2 \)
       
      $$ X_1  X_2 = \biggl(  \frac{- b - \sqrt{\Delta}}{2a} \biggr) \biggl( \frac{- b + \sqrt{\Delta}}{2a} \biggr)$$
      $$ X_1  X_2 = \frac{b^2 - b\sqrt{\Delta} + b\sqrt{\Delta}- \Delta }{4a^2} $$
      $$ X_1  X_2 = \frac{b^2  - \Delta }{4a^2} $$
       But, \(\Delta = b^2 - 4ac \), so: 
      $$ X_1  X_2 = \frac{b^2  -   (b^2 - 4ac)}{4a^2} $$
      $$ X_1  X_2 = \frac{  4ac}{4a^2} $$
      $$  X_1  X_2 = \frac{c}{a} $$
    
     
    
    Examples
    
    
      - 
        
Solving a second degree polynomial
       
      $$ P_2(X) = 2X^2 - 3X + 1 = 0 $$
      We calculate the discriminant \( \Delta \): 
      $$ \Delta  = (-3) ^2 - 4 \times 2 \times 1 = 1$$
  
      \(\Delta\) is positive, so \(P_2(X) \) has two real roots \(X_1, X_2\): 
  
      
  
      
  
      $$ \mathcal{S} =  \biggl \{X_{1} = \frac{1}{2} , \ X_{2} = 1 \biggr \} $$
      \(P_2(X) \) can be factorized: 
      $$ P_2(X) = 2 \left(X- \frac{1}{2} \right)\Bigl(X  -1 \Bigr) $$
  
      \(P_2(X) \) is the polynomial which is worth \(0\) at \( X = \frac{1}{2}\) et \( X = 1\). 
      
      - 
        
Solving a fourth degree polynomial by a variable change
       
      Let us solve this new equation:
      $$ P_4(X) = 6X^4 - X^2 - 1 = 0 $$
      When we have this type of situation, we do a variable change:
      
        Let us set a new variable down:
        $$ \varphi = X^2$$
       
      Then the polynomial \(P_4(X)\) becomes a second degree polynomial: 
      $$ P_4(X) \Longrightarrow  P_2( \varphi) = 6\varphi^2 - \varphi - 1 $$
      We can now calculate the discriminant \( \Delta \): 
      $$ \Delta  = (-1) ^2 - 4 \times (-1) \times  6 = 25$$
      Then \(P_2(\varphi ) \) has two real roots \(\varphi _1, \varphi _2\): 
  
      
  
      
  
      $$ \mathcal{S} =  \biggl \{\varphi_{1} =-\frac{1}{3}  , \ \varphi_{2} = \frac{1}{2 }  \biggr \} $$
      And \(P_2(\varphi) \) can be factorized: 
      $$ P_2(\varphi) = 6 \left(\varphi + \frac{1}{3} \right)\left(\varphi  - \frac{1}{2 } \right) $$
      We finally replace \(\varphi\) by its initial value, \( \varphi = X^2\) :
      $$ P_4(X) = 6 \left(X^2 + \frac{1}{3} \right)\left(X^2  - \frac{1}{2 } \right) $$
      We can further break it down:
      
      So,
      $$ P_4(X) = 6 \left(X^2 + \frac{1}{3} \right)\left(X  + \frac{1}{\sqrt2 } \right)\left(X  - \frac{1}{\sqrt2} \right) $$
      $$ P_4(X) = 6 \left(X^2 + \frac{1}{3} \right)\left(X  + \frac{\sqrt2}{2 } \right)\left(X  - \frac{\sqrt2}{2} \right) $$