English flag Arrows French flag
Moon Arrows Sun
Current
Arrows
Other

The Fibonacci sequence \((F_n)\) and the golden ratio \((\varphi)\)

The Fibonacci sequence is expressed in a recurrent way as:

$$ \forall n \in \mathbb{N}, \hspace{2em} F_{n + 2} = F_{n + 1} + F _n $$
$$ \text{with } : \Bigl \{ F_0 = 0, \ F_1 = 1 \Bigr \} $$

Here are its first terms:

Binet's formula

The general term of the Fibonacci sequence \((F_n)\) is worth:

$$ F_n = \frac{\varphi^n}{\sqrt{5}} - \frac{(1 - \varphi)^n}{\sqrt{5}} \qquad \bigl(\text{Binet's formula}\bigr) $$
$$ \text{with } \left( \varphi = \frac{1 + \sqrt{5}}{2} \right) $$
Expressions of powers of the golden ratio under a recurrent form
  1. With \(\varphi\) only
  2. $$ \forall n \in \mathbb{N}, $$
    $$ \varphi^{n + 2} = \varphi^{n + 1} + \varphi^{n} $$
  3. With \(\varphi\) and \((F_n)\)
  4. $$ \forall n \in \mathbb{N}, $$
    $$ \varphi^{n + 1} = \varphi F_{n + 1} + F_n $$
Recurisve expressions of the golden ration
  1. With square roots
  2. $$ \varphi = \sqrt{\sqrt{\sqrt{\sqrt{1 + \dots} + 1} + 1} + 1} $$
  3. With fractions
  4. $$ \varphi = 1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \dots etc.}}}} $$

Demonstrations

The Fibonacci sequence is expressed in a recurrent way as:

$$ \forall n \in \mathbb{N}, \hspace{2em} F_{n + 2} = F_{n + 1} + F _n $$
$$ \text{with } : \Bigl \{ F_0 = 0, \ F_1 = 1 \Bigr \} $$

Binet's formula

We know that the general term of a sequence of order 2, linear combination of its preceding terms can be determined by doing this:

$$ u_{n + 2} = p.u_{n + 1} + q.u_n \Longrightarrow u_n = A. \alpha^n + B.\beta^n \hspace{2em} \text{with } \left \{ \begin{gather*} (p, q) \in \bigl[\mathbb{R}^*\bigr]^2 \\ \\ A \text{ and } B \text{ to determine according to } u_0 \text{ and } u_1 \\ \\ \alpha \text{ and } \beta \text{ the two roots of } \Bigl[ r^2 - pr - q = 0 \Bigr] \end{gather*} \right \} $$

In our case: \((p = q = 1)\).

So,

$$ F_{n + 2} = F_{n + 1} + F _n \Longrightarrow F_n = A. \alpha^n + B.\beta^n $$

Where the coefficients \((\alpha, \ \beta)\) are solutions for \((E_c)\):

$$ r^2 - r - 1 = 0 \qquad (E_c) $$
  1. Détermination of coefficients \((\alpha, \ \beta)\)
  2. So, we have to solve this:

    $$ r^2 - r - 1 = 0 \qquad (E_c) $$

    Since we are dealing with a quadratic equation, we first calculate the discriminant \((\Delta)\):

    $$ \Delta = (-1)^2 - 4 \times 1 \times (-1) $$
    $$ \Delta = 1 + 4 $$
    $$ \Delta = 5 $$

    As \((\Delta > 0)\), we do have two distinct roots:

    $$ \alpha = \frac{1 - \sqrt{5}}{2} $$
    $$ \beta = \frac{1 + \sqrt{5}}{2} $$

    For the sake of simplicity, let us set down the golden ratio :

    $$ \varphi = \frac{1 + \sqrt{5}}{2} \qquad (\varphi) $$
    $$ 1 - \varphi = \frac{1 - \sqrt{5}}{2} \qquad (1 - \varphi) $$

    So that:

    $$ \varphi = \beta $$
    $$ 1 - \varphi = \alpha $$

    So, the general term of the sequence \((F_n)\) can be written as:

    $$ F_n = A.(1 - \varphi)^n + B.\varphi^n $$
  3. Détermination of coefficients \((A, \ B)\)
  4. Let's now determine the coefficients \((A, \ B)\) thanks to the first two terms of the sequence. We know that:

    $$ \Bigl \{ F_0 = 0, \ F_1 = 1 \Bigr \} $$

    So,

    $$ F_0 = A.(1 - \varphi)^0 + B.\varphi^0 = 0 $$
    $$ F_1 = A.(1 - \varphi)^1 + B.\varphi^1 = 1 $$

    Which leads us to solve the following system \((\mathcal{S})\):

    $$ (\mathcal{S}) \ \left \{ \begin{gather*} A + B = 0 \\ \\ A.(1 - \varphi) + B.\varphi = 1 \end{gather*} \right \} $$
    $$ \Longleftrightarrow $$
    $$ \left \{ \begin{gather*} A.\textcolor{#6F79AB}{\varphi} + B.\textcolor{#6F79AB}{\varphi} = 0 \\ \\ A.(1 - \varphi) + B.\varphi = 1 \end{gather*} \right \} $$

    By subtracting the values ​​of the two lines, we get:

    $$ A \times (2 \varphi - 1) = -1 $$
    $$ A = -\frac{1}{\sqrt{5}} $$

    Now, taking the first part of the original system, we inject the value of \(B\):

    $$ -\frac{1}{\sqrt{5}} + B = 0 $$
    $$ B = \frac{1}{\sqrt{5}} $$
  5. Modeling the general term \(F_n\) \(F_n\)
  6. Hence, the general term of the Fbonacci sequence \((F_n)\) is worth:

    $$ F_n = -\frac{(1 - \varphi)^n}{\sqrt{5}} + \frac{\varphi^n}{\sqrt{5}} $$
    $$ F_n = \frac{\varphi^n}{\sqrt{5}} - \frac{(1 - \varphi)^n}{\sqrt{5}} \qquad \bigl(\text{Binet's formula}\bigr) $$
    $$ \text{with } \left( \varphi = \frac{1 + \sqrt{5}}{2} \right) $$

Expressions of powers of the golden ratio under a recurrent form

  1. With \(\varphi\) only
  2. Starting the characteristic equation \((E_c)\) seen above:

    $$ r^2 - r - 1 = 0 \qquad (E_c) $$

    As the golden ratio \((\varphi)\) is solution, we can write the following relation for \(\varphi^2\) :

    $$ \varphi^2 = \varphi + 1 \qquad (\varphi^2) $$

    Furthermore, it is true that \((1 - \varphi)\) is also a solution.

    $$ (1 - \varphi)^2 = (1 - \varphi) + 1 $$

    But upon further development, we realize that it amounts to the same thing:

    $$ 1 -2 \varphi + \varphi^2 = 2 - \varphi $$
    $$ \varphi^2 = \varphi + 1 \qquad (\varphi^2) $$

    Multiplying both members by \(\varphi\), we do obtain that:

    $$ \varphi^3 = \varphi^2 + \varphi \qquad (\varphi^3) $$

    We can see that the recurrence relation is quite obvious.

    Let us then attempt to demonstrate, using a double induction, that:

    $$ \forall n \in \mathbb{N}, $$
    $$ \varphi^{n + 2} = \varphi^{n + 1} + \varphi^{n} \qquad (P_n) $$
    1. Computation of the two first terms

    2. For \((k = 0) \), it is the previous formula, which has already been proven \((\varphi^2)\):

      $$ \varphi^2 = \varphi + 1 \qquad (P_0) $$

      For \((k = 1) \), we do want to prove that \((P_1)\) is true:

      $$ \varphi^3 = \varphi^2 + \varphi \qquad (P_1) $$
      $$ \varphi^3 = \left( \frac{1 + \sqrt{5}}{2} \right)^3 $$
      $$ \varphi^3 = \left( \frac{1 + \sqrt{5}}{2} \right)^2 \left( \frac{1 + \sqrt{5}}{2} \right) $$
      $$ \varphi^3 = \left( \frac{1 + 2\sqrt{5} + 5}{4} \right) \left( \frac{1 + \sqrt{5}}{2} \right) $$
      $$ \varphi^3 = \left( \frac{6 + 2\sqrt{5}}{4} \right) \left( \frac{1 + \sqrt{5}}{2} \right) $$
      $$ \varphi^3 = \frac{6 + 6\sqrt{5} + 2\sqrt{5} + 10}{8} $$
      $$ \varphi^3 = \frac{16 + 8\sqrt{5}}{8} $$
      $$ \varphi^3 = 2 + \sqrt{5} $$
      $$ \varphi^2 + \varphi = \left( \frac{1 + \sqrt{5}}{2} \right)^2 + \frac{1 + \sqrt{5}}{2} $$
      $$ \varphi^2 + \varphi = \left( \frac{1 + \sqrt{5}}{2} \right)^2 + \frac{1 + \sqrt{5}}{2} $$
      $$ \varphi^2 + \varphi = \frac{3 + \sqrt{5}}{2} + \frac{1 + \sqrt{5}}{2} $$
      $$ \varphi^2 + \varphi = 2 + \sqrt{5} $$

      So, both propositions \((P_0)\) and \((P_1)\) are true.

    3. Heredity

    4. From the proposition \((P_k)\):

      $$ \varphi^{k + 2} = \varphi^{k + 1} + \varphi^{k} \qquad (P_k) $$

      The recurrence relation is direct when multiplying by \(\varphi\):

      $$ \varphi^{k + 3} = \varphi^{k + 2} + \varphi^{k + 1} \qquad (P_{k + 1}) $$
      $$ \varphi^{k + 4} = \varphi^{k + 3} + \varphi^{k + 2} \qquad (P_{k + 2}) $$

      So, both propositions \((P_{k + 1})\) et \((P_{k + 2})\) are true.

    5. Conclusion

    6. The proposition \((P_n)\) is true for its two first terms, \(n_0 = 0\) and \(n_1 = 1\), and it is hereditary from terms to terms for all \(k \in \mathbb{N}\).

      By the double recurrence principle, that statement is true for all \(n \in \mathbb{N}\).


    Hence,

    $$ \forall n \in \mathbb{N}, $$
    $$ \varphi^{n + 2} = \varphi^{n + 1} + \varphi^{n} $$
  3. With \(\varphi\) and \((F_n)\)
  4. Retrieving the expression \((\varphi^3)\), which has been checked above:

    $$ \varphi^3 = \varphi^2 + \varphi \qquad (\varphi^3) $$

    If we do replace \(\varphi^2\) by its other value:

    $$ \varphi^3 = (\varphi + 1) + \varphi $$
    $$ \varphi^3 = 2\varphi + 1 \qquad (\varphi^3)^* $$

    Similarly, if we continue in this way with \(\varphi^4\):

    $$ \varphi^4 = 2\varphi^2 + \varphi $$
    $$ \varphi^4 = 2(\varphi + 1) + \varphi $$
    $$ \varphi^4 = 2\varphi + 2 + \varphi $$
    $$ \varphi^4 = 3\varphi + 2 \qquad (\varphi^4)^* $$

    The terms of the Fibonacci sequence then appears:

    $$ \Bigl \{ 0, \ 1, \ 1 , \ 2, \ 3, \ 5, \ 8 ...etc. \Bigr \} $$

    Specifically, in \((\varphi^3)^*\) and \((\varphi^4)^*\) where:

    $$ \varphi^3 = 2\varphi + 1 \qquad (\varphi^3)^* $$
    $$ \varphi^3 = \varphi F_3 + F_2 \qquad (\varphi^3)' $$
    $$ \varphi^4 = 3\varphi + 2 \qquad (\varphi^4)^* $$
    $$ \varphi^4 = \varphi F_4 + F_3 \qquad (\varphi^4)' $$

    A second time, one is tempted to demonstrate that recurrence is such that:

    $$ \forall n \in \mathbb{N}, $$
    $$ \varphi^{n + 1} = \varphi F_{n + 1} + F_n \qquad (Q_n) $$
    1. Computation of the two first terms

    2. For \((k = 0) \):

      $$ \varphi^{1} = \varphi F_{1} + F_0 \qquad (Q_0) $$
      $$ \varphi^1 = \varphi $$
      $$ \varphi F_{1} + F_0 = \varphi \times 1 + 0 $$
      $$ \varphi F_{1} + F_0 = \varphi $$

      So, the proposition \((Q_0)\) is true.

    3. Heredity

    4. $$ \forall n \in \mathbb{N}, $$
      $$ \varphi^{k + 1} = \varphi F_{k + 1} + F_k \qquad (Q_k) $$

      We wish to establish the following relationship:

      $$ \varphi^{k + 2} = \varphi F_{k + 2} + F_{k + 1} \qquad (Q_{k + 1}) $$

      Let's start from \((Q_k)\) and let us multiply by \(\varphi\):

      $$ \textcolor{#6F79AB}{\varphi}\varphi^{k + 1} = \textcolor{#6F79AB}{\varphi}\varphi F_{k + 1} + \textcolor{#6F79AB}{\varphi}F_k \qquad (\textcolor{#6F79AB}{\varphi} Q_k) $$
      $$ \varphi^{k + 2} = \varphi^2 F_{k + 1} + \varphi F_k $$
      $$ \varphi^{k + 2} = (\varphi + 1) F_{k + 1} + \varphi F_k $$
      $$ \varphi^{k + 2} = \varphi F_{k + 1} + F_{k + 1} + \varphi F_k $$
      $$ \varphi^{k + 2} = \varphi (F_{k + 1} + F_k) + F_{k + 1} $$
      $$ \varphi^{k + 2} = \varphi (F_{k + 2}) + F_{k + 1} \qquad (Q_{k + 2}) $$

      We have clearly shown that \((Q_{k})\) is true, then \((Q_{k + 1})\) was too.

    5. Conclusion

    6. The proposition \((P_n)\) is true for its first term \(n_0 = 0\), and it is hereditary from terms to terms for all \(k \in \mathbb{N}\).

      By the recurrence principle, that statement is true for all \(n \in \mathbb{N}\).


      Hence,

      $$ \forall n \in \mathbb{N}, $$
      $$ \varphi^{n + 1} = \varphi F_{n + 1} + F_n $$

Expressions récursives sur nombre d'or

  1. With square roots
  2. By retrieving the previous expression of \(\varphi^2\), which has already been proved:

    $$ \varphi^2 = \varphi + 1 \qquad (\varphi^2) $$

    Taking the square root of it:

    $$ \varphi = \sqrt{\varphi + 1} $$

    As \(\varphi\) is expressed according to itself, it can be self-injected:

    $$ \varphi = \sqrt{\sqrt{\varphi + 1} + 1} $$
    $$ \varphi = \sqrt{\sqrt{\sqrt{\varphi + 1} + 1} + 1} $$

    And so on...

    $$ \varphi = \sqrt{\sqrt{\sqrt{\sqrt{1 + \dots} + 1} + 1} + 1} $$
  3. With fractions
  4. As well as above, we start again from \(\varphi^2\):

    $$ \varphi^2 = \varphi + 1 \qquad (\varphi^2) $$

    Dividing by \(\varphi\), we do have now:

    $$ \frac{\varphi^2}{\textcolor{#6F79AB}{\varphi}} = \frac{\varphi}{\textcolor{#6F79AB}{\varphi}} + \frac{1}{\textcolor{#6F79AB}{\varphi}} $$
    $$ \varphi = 1 + \frac{1}{\varphi} $$

    Hence:

    $$ \varphi = 1 - \frac{1}{\varphi} $$

    Again, we express \(\varphi\) according to itself and we auto-inject it:

    $$ \varphi = 1 - \frac{1}{1 - \frac{1}{\varphi}} $$
    $$ \varphi = 1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{\varphi}}} $$

    And so on...

    $$ \varphi = 1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \dots}}}} $$