French flag Arrows English flag
Sun Arrows Moon
Return Index

Analytical geometry in space

Let be \((O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})\) an orthonormal coordinate system in space.

Orthonormal coordinate system in space

Lines and planes

Parametric equation of a straight line

Parametric equation of a straight line in space

The parametric equation of a straight line \(\mathcal{D}\) in space, passing through a point \(A(x_0, y_0, z_0)\) and directed by a vector \(\vec{u}\begin{pmatrix} a\\ b \\c \end{pmatrix} \) (with \(a, b, c \) all three non-zero) is:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$
$$ M\bigl[x, y, z \bigr] \in \mathcal{D}(A, \vec{u}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x = at + x_0 \\ y = bt + y_0 \\z = ct + z_0 \end{Bmatrix} $$
$$ with \enspace \Biggl \{ \begin{gather*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \end{gather*} $$

Equation of a plane

Equation of a plane in space

The equation of a place \((\mathcal{P})\) in space, passing through a point \(A(x_0, y_0, z_0)\) and orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\) (with \(a, b, c \) all three non-zero) is:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$
$$ M\bigl[x, y, z \bigr] \in \mathcal{P}(A, \vec{n}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} ax + by + cz + d = 0$$
$$ with \enspace \Biggl \{ \begin{gather*} (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \\ d = -ax_0 - by_0 -c z_0 \end{gather*} $$

Distance from a point to a plane

Distance from a point to a plane in space

Let \(\mathcal{P}\) be a plane orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\) (with \(a, b, c \) all three non-zero), having as equation:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, \ ax + by + cz + d = 0$$

The distance from a point \(A(x_0, y_0, z_0)\) in relation to this plane \((\mathcal{P})\) orthogonally projecting on this plane at point \(H(x, y, z)\) is worth:

$$ d(A, \mathcal{P}) = \frac{\Bigl | -ax_0 - by_0 -c z_0 -d \Bigr |}{\sqrt{a^2 + b^2 + c^2}} $$
$$ with \enspace \Biggl \{ \begin{gather*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \\ d = -ax - by -c z \end{gather*} $$

Projection of a sum of vectors upon a plane

The projection of a sum of vectors is the sum of each vector's projection
Projection of the sum of two vectors, sum of the two respective projections
$$ \forall n \in \mathbb{N}, \ \forall (\vec{u_1}, \vec{u_2}, \ ..., \vec{u_n}), $$
$$ proj\left(\sum_{k=0}^n \overrightarrow{ u_k} \right) = \sum_{k=0}^n proj(\overrightarrow{u_k})$$


Geometrical figures

Equation of a sphere

Equation of a sphere in space

The sphere \((\mathcal{S})\) having a radius \(R\) and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$
$$ M \in \mathcal{S}(A, R) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} R^2 = (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 $$
$$ (with \enspace (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3) $$

Equation of a cylinder

Equation of a cylinder in space

The cylinder\((\mathcal{C})\) having a radius \(r\) and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ \forall (x, y) \in \hspace{0.05em}\mathbb{R}^2, $$
$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} r^2 = (x-x_0)^2 + (y-y_0)^2 $$
$$ (with \enspace (x_0, y_0) \in \hspace{0.05em} \mathbb{R}^2) $$

Equation of a cone

Equation of a cone in space

The cone \((\mathcal{C})\) having a half-angle \( \theta\), and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$
$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} (x- x_0)^2 + (y- y_0)^2 = k(z-z_0)^2 $$
$$ with \enspace \Biggl \{ \begin{gather*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ k = tan^2(\theta) \end{gather*} $$

Coordinates system

From cartesian to spherical coordinates

  1. Longitude-latitude coordinates
  2. Spherical coordinates: longitude-latitude

    $$ \Biggl \{ \begin{gather*} x = R \ cos(\varphi) \ cos(\theta) \\ y = R \ cos(\varphi) \ sin(\theta) \\ z = R \ sin(\varphi) \end{gather*} \qquad (\theta : longitude- \varphi : latitude) $$

    $$with \enspace \left \{ \begin{gather*} R =\sqrt{x^2 +y^2 +z^2 } \\ \theta = arctan \left( \frac{y}{x} \right) \\ \varphi = arcsin \left( \frac{z}{R} \right) \end{gather*} \right \}$$

  3. Longitude-colatitude coordinates
  4. Spherical coordinates: longitude-colatitude

    $$ \Biggl \{ \begin{gather*} x = R \ sin(\psi) \ cos(\theta) \\ y = R \ sin(\psi) \ sin(\theta) \\ z = R \ cos(\psi) \end{gather*} \qquad (\theta : longitude- \psi : colatitude) $$

    $$with \enspace \left \{ \begin{gather*} R =\sqrt{x^2 +y^2 +z^2 } \\ \theta = arctan \left( \frac{y}{x} \right) \\ \psi = arccos \left( \frac{z}{R} \right) \end{gather*} \right \}$$


Demonstrations

Lines and planes

Parametric equation of a straight line

Let \((\mathcal{D})\) be a straight line in space, passing through a point \(A(x_0, y_0, z_0)\) and directed by a vector \(\vec{u}\begin{pmatrix} a\\ b \\c \end{pmatrix} \) (with \((a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \) three real numbers which are non-zero simultaneously).

Parametric equation of a straight line in space

As \(M \in \mathcal{D}\), so the vectors \(\vec{u}\) and \(\overrightarrow{AM}\) are collinear. Thus:

$$ M\bigl[x, y, z \bigr] \in \mathcal{D}(A, \vec{u}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \overrightarrow{AM} = t \times \overrightarrow{u}$$
$$ \Longleftrightarrow \exists^{\infty} t \in \mathbb{R}, \enspace \begin{pmatrix} x -x_0 \\ y - y_0 \\z - z_0 \end{pmatrix} = \hspace{0.1em} \begin{pmatrix} ta \\ tb \\tc \end{pmatrix} $$
$$ \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x -x_0 = at\\ y - y_0 = bt \\z - z_0 = ct \end{Bmatrix} $$

The parametric equation of a straight line \(\mathcal{D}\) in space, passing through a point \(A(x_0, y_0, z_0)\) and directed by a vector \(\vec{u}\begin{pmatrix} a\\ b \\c \end{pmatrix} \) (with \((a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \) three real numbers which are non-zero simultaneously) is:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$
$$ M\bigl[x, y, z \bigr] \in \mathcal{D}(A, \vec{u}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x = at + x_0 \\ y = bt + y_0 \\z = ct + z_0 \end{Bmatrix} $$
$$ with \enspace \Biggl \{ \begin{gather*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \end{gather*} $$

The parameter \(t\) is a free parameter that can take any value.

In fact, the line \((\mathcal{D})\) extending to infinity, we obtain a formation of this latter by varying \(t\), leading to the intersection of three planes corresponding respectively to the three equations; which forms a series of points in space.

Parametric equation of a straight line in space - superposition of planes forming a line according to t

Equation of a plane

Let \((\mathcal{P})\) be a plane in space, passing through a point \(A(x_0, y_0, z_0)\) and orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\) (with \((a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \) three real numbers which are non-zero simultaneously).

Equation of a plane in space

So, any point \(M\bigl[x, y, z \bigr]\) belonging to this plane is orthogonal to \(\vec{n}\).

$$ M\bigl[x, y, z \bigr] \in \mathcal{P}(A, \vec{n}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \overrightarrow{MA} \perp \vec{n}$$

Two orthogonal vectors have their scalar product worthing zero.

$$ \Longleftrightarrow \hspace{0.1em} \overrightarrow{MA} .\vec{n} = 0$$
$$ \Longleftrightarrow \begin{pmatrix} x -x_0 \\ y - y_0 \\z - z_0 \end{pmatrix} . \hspace{0.1em} \begin{pmatrix} a \\ b \\c \end{pmatrix} = 0$$
$$ a(x-x_0) + b(y-y_0) + c(z-z_0) = 0 $$
$$ ax - ax_0 + by - by_0 + cz -c z_0 = 0 $$
$$ ax + by + cz \hspace{0.1em} \underbrace{-ax_0 - by_0 -c z_0} _\text{\( (d \hspace{0.1em} \in \hspace{0.05em} \mathbb{R})\)} \hspace{0.1em} = 0 $$
$$ ax + by + cz + d = 0 $$

The equation of a place \((\mathcal{P})\) in space, passing through a point \(A(x_0, y_0, z_0)\) and orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\) is:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$
$$ M\bigl[x, y, z \bigr] \in \mathcal{P}(A, \vec{n}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} ax + by + cz + d = 0$$
$$ with \enspace \Biggl \{ \begin{gather*} (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \\ d = -ax_0 - by_0 -c z_0 \end{gather*} $$

Distance from a point to a plane

Let \((\mathcal{P})\) be a plane in space, orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\)(with \((a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \) three real numbers which are non-zero simultaneously).

Let \(A(x_0, y_0, z_0)\) be a point orthogonally projecting on \((\mathcal{P})\) at point \(H(x, y, z)\).

Distance from a point to a plane in space

We are trying to estimate the distance \(AH\), shortest distance from the point \(A\) to the plane \((\mathcal{P})\).

By the definition of the scalar product, we do have:

$$ \overrightarrow{AH} .\vec{n} = ||\overrightarrow{AH} || \times ||\overrightarrow{n} || \times cos(\overrightarrow{AH}, \overrightarrow{n}) $$
$$ \overrightarrow{AH} .\vec{n} = AH \times \sqrt{a^2 + b^2 + c^2} \times (\pm 1) \qquad (1)$$

On the other hand, with the calculation of the scalar product by the coordinates product, we do have:

$$ \overrightarrow{AH} .\vec{n} = a(x-x_0) + b(y-y_0) + c(z-z_0) $$
$$ \overrightarrow{AH} .\vec{n} = \hspace{0.1em} \underbrace{ax + by + c z} _\text{\( -d \)} \ -ax_0 - by_0 -c z_0 $$
$$ \overrightarrow{AH} .\vec{n} = -ax_0 - by_0 -c z_0 -d \qquad (2) $$

Given that \((1)\) and \((2)\) are equal, being the smae scalar product, we now have:

$$ AH \times \sqrt{a^2 + b^2 + c^2} \times (\pm 1) = -ax_0 - by_0 -c z_0 -d $$

Calculant une distance, on peut passer en valeur absolue :

$$ \Bigl | AH \times \sqrt{a^2 + b^2 + c^2} \times (\pm 1) \Bigr | = \Bigl | -ax_0 - by_0 -c z_0 -d \Bigr | $$
$$AH = \frac{\Bigl | -ax_0 - by_0 -c z_0 -d \Bigr |}{\Bigl |\sqrt{a^2 + b^2 + c^2} \times (\pm 1) \Bigr |} $$
$$AH = \frac{\Bigl | -ax_0 - by_0 -c z_0 -d \Bigr |}{\sqrt{a^2 + b^2 + c^2}} $$

The distance from a point \(A(x_0, y_0, z_0)\) in relation to this plane \((\mathcal{P})\) orthogonally projecting on this plane at point \(H(x, y, z)\) is worth:

$$ d(A, \mathcal{P}) = \frac{\Bigl | -ax_0 - by_0 -c z_0 -d \Bigr |}{\sqrt{a^2 + b^2 + c^2}} $$
$$ with \enspace \Biggl \{ \begin{gather*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \\ d = -ax - by -c z \end{gather*} $$

Projection of a sum of vectors upon a plane

In this part, the term projection will always means orhtogonal projection.

Let \((\mathcal{P})\) be a plane having as normal vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\), and two non-null vectors being non-collinear to this plane, \(\vec{u}\begin{pmatrix} x_1\\ y_1 \\z_1 \end{pmatrix}\) and \(\vec{v}\begin{pmatrix} x_2\\ y_2 \\z_2\end{pmatrix}\).

Let us call \(\vec{u'}\) and \(\vec{v'}\) the respective projections of the two vectors \(\vec{u}\) and \(\vec{v}\) upon this plane.

Projection of two vectors upon a plane

For the sake of simplicity, we placed the points \(A, B, C\) as well as their respective projection \(A', B', C'\).


Now, let \(\vec{w} = \vec{u} + \vec{v}\), the sum of vectors \(\vec{u}\) and \(\vec{v}\), and the vector \(\vec{w'}\) being the projection of \( \vec{w}\) on this plane.

Projection of the sum of two vectors upon a plane

In the case of the initial points \(A, B, C\) and those of their respective projection \(A', B', C'\), the Chasles relation applied:

Projection of the sum of two vectors, sum of the two respective projections

$$ \Biggl \{ \begin{gather*} \vec{u} + \vec{v} = \vec{w} \\ \vec{u}' + \vec{v}' = \ \vec{w}' \end{gather*} $$

Therefore,

The projection of a sum of vectors is the sum of each vector's projection
$$ \forall n \in \mathbb{N}, \ \forall (\vec{u_1}, \vec{u_2}, \ ..., \vec{u_n}), $$
$$ proj\left(\sum_{k=0}^n \overrightarrow{ u_k} \right) = \sum_{k=0}^n proj(\overrightarrow{u_k})$$

Geometrical figures

Equation of a sphere

Let \((\mathcal{S})\) be a sphere having a radius \(R\) and centered at point \(A(x_0, y_0, z_0)\).

Equation of a sphere in space

On this sphere, every point every point \(M\bigl[x, y, z \bigr]\) is equidistant from the point \(A\), which is worth the length of the radius \(R\).

We know that using the the Pythagorean theorem, that the distance \( AB\) in a three-dimensional space is worth:

$$\forall (A, B) \in \hspace{0.05em} (O, \vec{x}, \vec{y}, \vec{z})^2, $$
$$AB =\sqrt{(x_b - x_a)^2 + (y_b - y_a)^2 + (z_b - z_a)^2 }$$

So,

$$ M \in \mathcal{S}(A, R) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} AM = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 }$$
$$ R = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 }$$
$$ R^2 = (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 $$

The sphere \((\mathcal{S})\) of radius \(R\) and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ M \in \mathcal{S}(A, R) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} R^2 = (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 $$
$$ (with \enspace (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3) $$

Equation of a cylinder

Let \((\mathcal{C})\) be a vertical cylinder of radius \(r\) and centered at point \(A(x_0, y_0, z_0)\).

Equation of a cylinder in space

In the plane \((O, \overrightarrow{i}, \overrightarrow{j})\), the cylinder describes a circle.

We know that using the the Pythagorean theorem, that the distance \( AB\) in a plane is worth:

$$\forall (A, B) \in \hspace{0.05em} (O, \vec{x}, \vec{y})^2, $$
$$AB = \sqrt{ (x_b - x_a)^2 + (y_b - y_a)^2} $$

We then have,

$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} AM = \sqrt{(x-x_0)^2 + (y-y_0)^2 }$$
$$ r = \sqrt{(x-x_0)^2 + (y-y_0)^2 }$$
$$ r^2 = (x-x_0)^2 + (y-y_0)^2 $$

The vertical axis \(z\) can take any value, so it is a free variable.


The cylinder \((\mathcal{C})\) having a radius \(r\) and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} r^2 = (x-x_0)^2 + (y-y_0)^2 $$
$$ (with \enspace (x_0, y_0) \in \hspace{0.05em} \mathbb{R}^2) $$

Equation of a cone

Let \((\mathcal{C})\) a vertical cone have as half-angle \( \theta\), and centered at point \(A(x_0, y_0, z_0)\).

Equation of a cone in space

In the figure below, we can see that:

$$ M \in \mathcal{C}(A, \theta) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} tan(\theta) = \frac{AM'}{AM} $$
$$ \Longleftrightarrow \hspace{0.1em} tan(\theta) = \frac{\sqrt{ (x- x_0)^2 + (y- y_0)^2} }{|z-z_0|} $$
$$ tan^2(\theta) = \ \frac{ (x- x_0)^2 + (y- y_0)^2 }{(z-z_0)^2} $$
$$ (x- x_0)^2 + (y- y_0)^2 = (z-z_0)^2 tan^2(\theta) $$

The cone \((\mathcal{C})\) have as half-angle \( \theta\), and centered at point \(A(x_0, y_0, z_0)\) \(A(x_0, y_0, z_0)\) has for equation in space:

$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} (x- x_0)^2 + (y- y_0)^2 = k(z-z_0)^2 $$
$$ with \enspace \Biggl \{ \begin{gather*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ k = tan^2(\theta) \end{gather*} $$

Coordinates system

From cartesian to spherical coordinates

In some cases, it can be useful to use spherical coordinates (in two dimensions : polar coordinates), especially when working with spheres.


  1. Longitude-latitude coordinates
  2. In a usual orthonormal reference frame in space \((O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})\), we represented a point \(M\bigl[x, y, z \bigr]\).

    Spherical coordinates : longitude-latitude

    Let \(R\) representing the distance from this point to the origin and \(R'\) its projection on the horizontal plane \((O, \overrightarrow{i}, \overrightarrow{j})\).

    Likewise, we called \(\theta\) the angle formed by the abscissa axis \((O, \overrightarrow{i})\) and \(R'\), and also \(\varphi\) the angle formed \(R'\) and \(R\).

    $$ \Biggl \{ \begin{gather*} \theta = (\overrightarrow{Ox}, \overrightarrow{R'}) \\ \varphi= (\overrightarrow{R'}, \overrightarrow{R})\end{gather*} $$


    In the following figure, we have represented the point \(M'\), projection of point \(M\) on the horizontal plane \((O, \overrightarrow{i}, \overrightarrow{j})\).

    Calculation of the projection of R on the horizontal plane

    With the classic trigonometry rules, we easily see that:

    $$ \Biggl \{ \begin{gather*} z = R \ sin(\varphi) \\ R' = R \ cos(\varphi) \end{gather*} $$

    Now, working with a front view of the horizontal plane \((O, \overrightarrow{i}, \overrightarrow{j})\), we can calculate the coordinates corresponding to \(x\) and \(y\).

    Calcul of x and y on the horizontal plane

    We do have :

    $$ \Biggl \{ \begin{gather*} x = R \ cos(\varphi) \ cos(\theta) \\ y = R \ cos(\varphi) \ sin(\theta) \end{gather*} $$

    Finally, the distance \(R\) is easily calculated from cartesian coordinates \((x, y, z)\):

    $$R =\sqrt{x^2 +y^2 +z^2 }$$

    As well, we obtain both angles \(\theta\) and \(\varphi\) by:

    $$ \Biggl \{ \begin{gather*} \theta = arctan \left( \frac{y}{x} \right) \\ \varphi = arcsin \left( \frac{z}{R} \right) \end{gather*} $$


    So,

    $$ \Biggl \{ \begin{gather*} x = R \ cos(\varphi) \ cos(\theta) \\ y = R \ cos(\varphi) \ sin(\theta) \\ z = R \ sin(\varphi) \end{gather*} \qquad (\theta : longitude- \varphi : latitude) $$

    $$with \enspace \left \{ \begin{gather*} R =\sqrt{x^2 +y^2 +z^2 } \\ \theta = arctan \left( \frac{y}{x} \right) \\ \varphi = arcsin \left( \frac{z}{R} \right) \end{gather*} \right \}$$


  3. Longitude-colatitude coordinates
  4. here is another way to represent spherical coordinates; we can use colatitude instead of latitude.

    We then have a new angle \(\psi\) which starts from the vertical axis \(\overrightarrow{Oz}\) towards \(R\) in the antitrigonometric direction.

    Spherical coordinates : longitude-colatitude

    $$ \Biggl \{ \begin{gather*} \theta = (\overrightarrow{Ox}, \overrightarrow{R'}) \\ \varphi= (\overrightarrow{Oz}, \overrightarrow{R})\end{gather*} $$


    Which gives us, applying the same reasoning:

    $$ \Biggl \{ \begin{gather*} x = R \ sin(\psi) \ cos(\theta) \\ y = R \ sin(\psi) \ sin(\theta) \\ z = R \ cos(\psi) \end{gather*} \qquad (\theta : longitude- \psi : colatitude) $$

    $$with \enspace \left \{ \begin{gather*} R =\sqrt{x^2 +y^2 +z^2 } \\ \theta = arctan \left( \frac{y}{x} \right) \\ \psi = arccos \left( \frac{z}{R} \right) \end{gather*} \right \}$$


Examples

  1. Intersection between two planes\(: \mathcal{P} \cap \mathcal{P}' \)

  2. Let us find the intersection \((\mathcal{P} \cap \mathcal{P}') \) between the two planes \((\mathcal{P}) \) and \((\mathcal{P}') \).

    $$ (\mathcal{S}) \ \Biggl \{ \begin{gather*} \ \ 3x \ - \ y \ + z \hspace{1.8em}= 0 \qquad (\mathcal{P}) \\ -2x +2y + z + 1 = 0 \qquad (\mathcal{P}') \end{gather*} $$

    We scale the system \((\mathcal{S})\) performing the linear combination \( 2(\mathcal{P}) \) + \( 3(\mathcal{P}') \).

    $$ (\mathcal{S}) \ \Biggl \{ \begin{gather*} 3x - y \ + z = 0 \hspace{5em} (\mathcal{P}) \\ \ \ \ \ 4y +5 z = -3 \qquad \qquad (2(\mathcal{P}) + 3(\mathcal{P}') ) \end{gather*} $$

    The system is of the rank \(2\), then the intersection is a straight line which we will note \( (\mathcal{D})\). Moreover, the parameter \( z \) is a free variable and:

    $$z = \frac{4y-3}{5} \Longleftrightarrow y = \frac{-5z-3}{4} $$

    So, we solve the system by going backwards and we find:

    $$ \left \{ \begin{gather*} x = \frac{-3z-1}{4} \\ y = \frac{-5z-3}{4} \\ z= z \end{gather*} \right \} $$

    We choose as value \( z = 0 \) to fix a point on the line \( (\mathcal{D})\). So \( A\left(-\frac{1}{4},-\frac{3}{4}, 0 \right) \in \mathcal{D}\).

    Furthermore, we see that the vector \(\vec{u}\begin{pmatrix} -\frac{3}{4} \\ - \frac{5}{4} \\ \hspace{1em} 1 \end{pmatrix}\) leads the straight line \( (\mathcal{D})\), then the latter has the equation:

    $$ M\bigl[x, y, z \bigr] \in \mathcal{D}(A, \vec{u}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x + \frac{1}{4} = -\frac{3}{4}t\\ y + \frac{3}{4} = -\frac{5}{4}t \\z = t \end{Bmatrix} $$

    So,

    $$(\mathcal{P} \cap \mathcal{P}')=(\mathcal{D}) \Longleftrightarrow \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x = -\frac{3}{4}t - \frac{1}{4}\\ y = -\frac{5}{4}t -\frac{3}{4} \\z = t \end{Bmatrix} $$

  3. Intersection between a line and a plane \(: \mathcal{D} \cap \mathcal{P} \)

  4. Let us find the intersection \((\mathcal{D} \cap \mathcal{P}) \) between a line \((\mathcal{D}) \) and a plane \((\mathcal{P}) \).

    $$ (\mathcal{D}) \ \Biggl \{ \begin{gather*} x = t-1 \\ y = -2t + 3 \\ z= -t+5 \end{gather*} $$
    $$ 2x + y -3z + 6 = 0 \qquad (\mathcal{P})$$

    We inject the coordinates of \((\mathcal{D}) \) in those of \((\mathcal{P}) \), and we solve \((L) \) :

    $$ 2(t-1) -2t + 3 -3(-t+5) + 6 = 0 \qquad (L)$$
    $$ 2t-2-2t+3+3t -15 +6 = 0 \qquad (L)$$
    $$ 3t-8 = 0 \Longleftrightarrow t = \frac{8}{3} \qquad (L)$$

    As \(t \) is unique, there is a point of intersection, which we will note \(A\).

    We thus determine this point using the parametric equation of the line \((\mathcal{D}) \).

    Then this point of intersection is:

    $$ (\mathcal{D} \cap \mathcal{P}) = A\left(\frac{5}{3}; -\frac{7}{3}; \frac{7}{3} \right)$$

  5. Intersection between two lines\(: \mathcal{D} \cap \mathcal{D}' \)

  6. Let us find the intersection \((\mathcal{D} \cap \mathcal{D}') \) between two lines \((\mathcal{D}) \) and \((\mathcal{D}') \).

    $$ (\mathcal{D}) \ \Biggl \{ \begin{gather*} x = 2t-1 \\ y = -t-2 \\ z= t+2 \end{gather*} $$
    $$ (\mathcal{D}') \ \Biggl \{ \begin{gather*} x = s+1 \\ y = 3s-1\\ z= 2s+1\end{gather*} $$

    We do the following system:

    $$ (\mathcal{D} \cap \mathcal{D}') \ \Longleftrightarrow \Biggl \{ \begin{gather*} 2t-1 = s+1 \\ -t-2 = 3s-1\\ t +2 = 2s+1\end{gather*} $$

    $$ (\mathcal{D} \cap \mathcal{D}') \ \Longleftrightarrow \ \Biggl \{ \begin{gather*} 2t-s = 5 \ \ \qquad (L_1) \\ -t-3s = 1 \qquad (L_2) \\ t-2s = -1 \qquad (L_3) \end{gather*} $$

    We first solve the first two equations. We carry out \( (L_1 + 2 L_2)\):

    $$-7s = 7 \qquad (L_1 + 2 L_2) \ \Longrightarrow \ s = -1 \ \Longrightarrow \ t = 2 $$

    This solution is not suitable for the third one \( (L_3)\) because:

    $$2 - 2\times(-1) = 4\neq -1 $$

    So, as there is no pair \( (t, s) \in \hspace{0.05em} \mathbb{R}^2\) which are suitable for the two parametric equations of the two lines \((\mathcal{D}) \) and \((\mathcal{D}') \), they have no point of intersection.

    $$(\mathcal{D} \cap \mathcal{D}') = \emptyset $$

  7. Intersection between a plane and a sphere \( : \mathcal{P} \cap \mathcal{S} \)

  8. Let us find the intersection \((\mathcal{P} \cap \mathcal{S}) \) between a plane\((\mathcal{P}) \) and a sphere \((\mathcal{S}) \).

    $$ z = \frac{1}{2} \qquad (\mathcal{P}) $$
    $$ x^2 + y^2 + z^2 = 1 \qquad (\mathcal{S}) $$

    We now inject \((\mathcal{P}) \) into \((\mathcal{S}) \):

    $$ x^2 + y^2 = \frac{3}{4} $$

    So, we get an equation for the coordinates \((x,y) \in \hspace{0.05em} \mathbb{R}^2 \). On the other hand, it is the equation of a cone of radius \(R = \frac{\sqrt{3}}{2}\), so it is then necessary to keep the equation of the plane \((\mathcal{P}) \) to fix the cone and therefore obtain a circle.

    So, the intersection between \((\mathcal{P}) \) and \((\mathcal{S}) \) is modelled by the double equation:

    $$ (\mathcal{P} \cap \mathcal{S}) \ \Longleftrightarrow \ \Biggl \{ \begin{gather*} x^2 + y^2 = \frac{3}{4} \\ z = \frac{1}{2} \end{gather*} $$

    Intersection entre un plan et une sphère
Scroll top Go to the top of the page
Return Index